ME 115(a): Solution to Homework #4
(Winter 2013/2014)

Problem 1: (5 points, Prob. 11(e) in Chapt. 2 of MLS)

Part (e): Let V? denote the planar body velocity:
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Therefore:
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The spatial angular velocity can be simplified as follows:

vs _ pebpT _ |T11 Ti2| |0 —w| [T 2| 0 —det(R)| |0
W= ROl = |:7”21 7“22:| |:u} 0:| |:7’12 7’22:| _w[det(R) 0 - 1

Using this result:
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Problem 2: (10 points, Problem 14 in Chapter 2 of MLS).

Part (a): Let g € SE(3) denote a homogeneous transformation matrix:

RS E

07 1 0 R

Then: .
SRR, R R (R R
g 01 A I ) 0 RT




—

where we have made use of the identity (RTp) = R'pR. Let’s now compute Ad,Ad,-1:
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Hence, Ad,-1 must equal (Ad,)~* since AdjAd,1 = 1.
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Problem 3: (25 points, Problem 18(a,b,c,d,e) in Chapter 2 of MLS).

Part (a): Let
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denote the relative location of a moving body (with a reference frame “B” attached to the
moving body) with respect to a fixed observer in frame “A.” The body velocity of the moving
body is:
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To show the desired result,
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where we have used the fact that &S, = R,

Part (b): There are many ways to solve this problem. For example, you could either start
with Proposition 2.14 or Proposition 2.15 on page 59 of MLS which relate the velocities of
three frames, A, B, and C. Let’s choose Prop. 2.15:

VE = Ad iV + VR (2)
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Using the fact that

Eq. (2) can be written as:
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Part (c): Let frames A and B be stationary “spatial” frames, and let Frame C be fixed to
a moving body. Let V;" be the hybrid velocity of the body, as seen by an observer in the B
frame. If we now want to express this velocity as seem by an observer in the A frame (i.e.,
changing the spatial frame), we need to calculate V. You can do this using the results of
part (b) of this problem, which derived the result:

‘/a}tlz = Ad*RabecVZlL; + AdRab ‘/b}é (4>

If you chose this approach, then since A and B are stationary, V* = 0. Hence, Eq. (3) takes
the form:
‘/ahé = AdRab‘/ZZ

Hence, the hybrid velocity is dependent on the orientation of the spatial frame, but not its
position.

Alternatively, if you don’t want to rely upon part (b), you can recall that the expression for

the hybrid velocity is: _
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Since Pue = Pap + RapPre, and pgp is constant:
Pac = Rabﬁbe-
Similarly, @y = Rap@pe. Hence, V" is dependent of j;, but not Rgp.

Part (d): Let A be a stationary spatial frame. Let B and C be two different frames attached
to a moving body. Let us assume that the velocity of the rigid body is given by V2. If we
now switch the location of the body fixed frame from position B to position C, the hybrid



velocity of the body is given by V. Since B and C are both fixed in the body, then V}* =0
in Eq. (3). Hence Eq. (3) reduces to:
V= Ad_ g, V5
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Hence, the hybrid velocity in only dependent on py,., the position of the body frame, and not
on Ry, the orientation of the body fixed frame. Alternatively, you could compute V" in a
“brute force” way:
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Thus, the result only depends upon pp., and not Rj..

Part (e): Let the position and orientation of a moving rigid body be given by R(t) and
p(t). Let V? be the body velocity of the rigid body, and let F® be a wrench applied to the
body, expressed in body coordinates. The power applied to the body due to this wrench is
given by:

Vb X Fb — (Vb)TFb (5)
Let V" denote the velocity of the body in hybrid coordinates. Similarly, define the hybrid
wrench to be F". We will define F” to be the wrench that preserves the amount of power
in Eq. (5):

Vb X Fb — (Vb)TFb — Vh A Fh
— (Vh)T Fh
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Hence, it must be true that:

Problem 4: (10 points, Problem 15 in Chapter 2 of MLS)
Since gae = Gavgoe, using the product rule for differentiation yields:
Vabc = g;jlgac
= 9o 9 ab(Javgre + Javinc)
= 9o Vargoe + Vie (6)



Converting to vector form via the V operator yields:
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Vabc = (Vabc)v = Adgb_cl Vacb + ‘_/;)lé

Problem 5: (10 Points, Problem 16(a,b) in Chapter 2 of MLS)

Part (a): go3 can be determined in a variety of ways, such as by using the Denavit-
Hartenberg, the product of exponentials (POE) approach, or a “brute force” approach.
Let’s use the POE. Assume that the reference configuration is that given in Figure 2.17 of
MLS. Hence, gs7(0) is:
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The twist coordinates of the joint axes (in the reference configuration) are:
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The forward kinematics is then given by

gst = €"51e"2g47(0)
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Part (b): Given ggr, the spatial velocity can easily be computed as

Vsr = (9sr9s7)"- (8)
Later will will learn that one can formally rearrange these equations into the form:
Vsr = Jort

where J§; is termed the spatial Jacobian matriz. One could substitute Eq. (7) directly into
Eq. (8) and carry through with the tedious algebra. To get a “hint” about the Jacobian



matrix, note that
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Hence, the spatial Jacobian matrix takes the form:
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Part (c): The body velocity can be computed as a function of the body Jacobian matrix,
or can be computed as the adjoint of the spatial velocity found in part (b). In either case,
the result is:
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