ME 115(b): Homework #5 Solution

Problem #1:

Recall that the definition of the evolute, $\beta(t)$, of a *planar* curve, $\alpha(t)$, is:

$$\beta(t) = \alpha(t) + \frac{1}{\kappa(t)}\vec{n}(t)$$

where $\kappa(t)$ is the curvature of $\alpha(t)$ and $\vec{n}(t)$ is the unit normal vector of $\alpha(t)$ at t. Let's assume that the curve is arc-length parametrized, i.e., t is the arc-length parameter.

The tangent to the evolute is simply derived by taking the derivative of the evolute equation.

$$\frac{d\beta}{dt} = \vec{u} + \frac{d}{dt} \left(\frac{1}{\kappa(t)} \vec{n}(t) \right) = \vec{u} + \frac{\kappa(t)\vec{n}'(t) - \vec{n}(t)\kappa'(t)}{\kappa^2(t)} \tag{1}$$

Recall that for a regular curve, $\vec{u}(t) = \alpha'(t)$, $\vec{u}'(t) = \kappa(t)\vec{n}(t)$.

What is $\vec{n}'(t)$ for a planar curve? Since $\vec{n}(t)$ is a unit length curve, then $\vec{n}'(t)$ must be a vector orthogonal to $\vec{n}(t)$ -i.e., a vector in the direction of $\vec{u}(t)$. Thus, assume that $\vec{n}' = \gamma \vec{u}$, where γ is some proportionality constant, which is to be determined.

From the relationship $\vec{u} \cdot \vec{n} = 0$, we can obtain (by taking derivatives):

$$0 = \vec{u}' \cdot \vec{n} + \vec{u} \cdot \vec{n}' \tag{2}$$

$$= \kappa + \vec{u} \cdot \vec{n}' \tag{3}$$

$$= \kappa + \vec{u} \cdot (\gamma \vec{u}) \tag{4}$$

$$= \kappa + \gamma \tag{5}$$

This implies that:

$$\vec{n}^{'}=-\kappa\vec{u}$$

Combining these results, gives:

$$\frac{d\beta(t)}{dt} = \vec{u} + \frac{\kappa(t)\vec{n}' - \vec{n}(t)\kappa'}{\kappa^2}$$
(6)

$$= \vec{u} + \frac{-\kappa^2 \vec{u} - \kappa' \vec{n}}{\kappa^2} \tag{7}$$

$$= \frac{-\kappa'}{\kappa}\vec{n}r \tag{8}$$

Thus, $d\beta/dt$ is a vector in the direction of the normal to $\alpha(t)$.

Part (b): The evolute of a circle is simply a point.

For a circle:

$$\alpha(t) = \begin{bmatrix} r\cos(\frac{t}{r}) \\ r\sin(\frac{t}{r}) \end{bmatrix}$$
(9)

$$\beta(t) = \begin{bmatrix} r\cos(\frac{t}{r}) \\ r\sin(\frac{t}{r}) \end{bmatrix} + r\begin{bmatrix} -\cos(\frac{t}{r}) \\ sin(\frac{t}{r}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(10)

Problem #2

Part (a): Let's define the object frames on the two bodies as follows:

Recall that the boundary of the ellipse can thus be parametrized as:

$$c_1(\mu_1) = \begin{bmatrix} a\cos(\mu_1) \\ b\sin(\mu_1) \end{bmatrix}$$

where μ_1 is the "curve parameter" of the ellipse boundary. It is not necessarily the arc-length parameter. Note, with this parametrization, the normal vector (see below) is pointing *inward* into the object. The circle can be parametrized as:

$$c_2(\mu_2) = \begin{bmatrix} r\cos(\mu_2) \\ -r\sin(\mu_2) \end{bmatrix}$$

Thus, the tangent vectors (not necessarily unit length) to the two surfaces are:

$$\vec{t}_1(\mu_1) = \begin{bmatrix} -a\sin(\mu_1) \\ b\cos(\mu_1) \end{bmatrix}$$
(11)

$$\vec{t}_2(\mu_2) = \begin{bmatrix} -r\sin(\mu_2) \\ -r\cos(\mu_2) \end{bmatrix}$$
(12)

Similarly:

$$M_1 = |\vec{t_1}| = (a^2 \sin^2 \mu_1 + b^2 \cos^2 \mu_1)^{1/2}$$
(13)

$$M_2 = |\vec{t_2}| = r \tag{14}$$

Recall that the curvature of the i^{th} planar surface could be computed as:

$$\kappa_i = -M_i^{-2} \left(\frac{\partial c_i}{\mu_i}\right)^T \frac{\partial \vec{n}_i}{\partial \mu_i}$$

For planar curves, the normal can be easily computed as the unit tangent vector rotated by $\pm \pi/2$

$$\vec{n}_1 = -\frac{1}{(a^2 \sin^2 \mu_1 + b^2 \cos^2 \mu_1)^{1/2}} \begin{bmatrix} b \cos \mu_1 \\ a \sin \mu_1 \end{bmatrix}$$

Consequently:

$$\frac{\partial \vec{n}_i}{\partial \mu_1} = -\frac{ab}{(a^2 \sin^2 \mu_1 + b^2 \cos^2 \mu_1)^{3/2}} \begin{bmatrix} -a \sin \mu_1 \\ b \cos \mu_1 \end{bmatrix}$$

Thus:

$$\kappa_1 = \frac{ab}{(a^2 \sin^2 \mu_1 + b^2 \cos^2 \mu_1)^{3/2}}$$
$$\vec{n}_2 = \begin{bmatrix} -r \cos(\mu_2) \\ -r \sin(\mu_2) \end{bmatrix}$$

Consequently:

$$\frac{\partial \vec{n}_2}{\partial \mu_2} = R$$

Thus:

$$\kappa_2 = \frac{1}{r}$$

Assuming that v_t and $\dot{\theta}$ are given, the contact equations are:

$$\dot{\mu_1} = (\kappa_1 + \kappa_2)^{-1} M_1^{-1} (-\dot{\theta} + \kappa_2 v_t)$$
(15)

$$= \left(\frac{ab}{(a^2\sin^2\mu_1 + b^2\cos^2\mu_1)^{3/2}} + \frac{1}{r}\right)^{-1} (a^2\sin^2\mu_1 + b^2\cos^2\mu_1)^{1/2} (-\dot{\theta} + \frac{1}{r}v_t) \quad (16)$$

$$\dot{\mu}_2 = (\kappa_1 + \kappa_2)^{-1} M_2^{-1} (\dot{\theta} + \kappa_1 v_t)$$
(17)

$$= \left(\frac{ab}{(a^2\sin^2\mu_1 + b^2\cos^2\mu_1)^{3/2}} + \frac{1}{r}\right)^{-1}\frac{1}{r}(\dot{\theta} + \frac{ab}{(a^2\sin^2\mu_1 + b^2\cos^2\mu_1)^{3/2}}v_t)$$
(18)

The relative curvature is ill defined when $\kappa_1 + \kappa_2 = 0$. In other words, when:

$$\frac{ab}{\left(a^2 \sin^2 \mu_1 + b^2 \cos^2 \mu_1\right)^{\frac{3}{2}}} = -\frac{1}{r} \tag{19}$$