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Abstract
Robot path planning algorithms for finding a goal in
a unknown environment focus on completeness
rather than optimality. In this paper, we investigate
several strategies for using map information,
however incomplete or approximate, to reduce the
cost of the robot’s traverse. The strategies are based
on optimistic, pessimistic, and average value
assumptions about the unknown portions of the
robot’s environment. The strategies were compared
us ing randomly-generated f rac ta l  te r ra in
environments. We determined that average value
approximations work best across small regions. In
their absence, an optimistic strategy explores the
environment, and a pessimistic strategy refines
existing paths.

1 Introduction
Path planning for mobile robots has been extensively studied
in the robotics literature. Many algorithms exist for deter-
mining an optimal path from a starting point to a goal point
given complete information about the robot’s environment
[Latombe, 91]. If the robot’s environment is not fully known
during the planning phase, several algorithms exist that use
local sensing to find the goal. The strategies employed by
these algorithms include obstacle perimeter following, sys-
tematic search of the environment, and locally-directed wan-
dering [Korf, 87] [Lumelsky and Stepanov, 86] [Pirzadeh
and Snyder, 90] [Zelinsky, 92].

These approaches focus on completeness rather than
optimality, that is, they are guaranteed to find a path to the
goal if one exists but pay little attention to minimizing the
cost of the robot’s traverse. The key to minimizing the cost is
to capi ta l ize on what  is  known about  the robot ’s
environment, if anything at all. Often times the environment
can be partially-known, approximated, or estimated.
Furthermore, this knowledge of the environment (referred to
as themap) can improve as the robot senses the environment,
and the updated map can be used to improve both the current
traverse and subsequent traverses.

This paper explores several navigation strategies for
finding the goal in an unknown environment that use map
information to minimize the cost of the traverse. We begin
with an overview of D*, a planning algorithm that makes
optimal use of map information to move a robot from start to
goal. Second, we define what we mean by map information
and discuss the environment modelled in our experiments.
Third, we apply the D* algorithm to a set of path planning

problems by varying the prior map information and
quantifying the effects on the cost of the robot’s traverse.
Finally, we draw conclusions and describe future work.

2 The D* Algorithm
Consider the following approach for using map information
during the robot’s traverse. Let S be the robot’s start state, G
the goal state, X the current state, and M the robot’s current
map.

1. Store all known, approximated, estimated, and
believed information about the robot’s environ-
ment in M. Let X equal S.

2. Plan the optimal path from X to G using all
information in M. Terminate with failure if no
path can be found.

3. Follow the path from Step 2 until either G is
reached (terminating with success) or the robot’s
sensor discovers a discrepancy between M and
the environment.

4. Update M to include the sensor information and
go to Step 2.

In short, this approach plans the optimal path to the goal
using all known information and replans from the current
state whenever new or conflicting information is discovered.
We assert that this approach is not only logical but is similar
to what humans do when navigating through an unknown or
uncertain environment. This replanning approach produces
anoptimal traverse defined as follows:

A traverse is the sequence of states visited by the robot
enroute from S to G. A traverse is optimal if, for every
state X in the sequence, the successor state to X is part of
an optimal path from X to G given all aggregate map
information known to the robot at state X.

The  p rob lem w i th  th i s  approach  i s  s t r i c t l y
computational: replanning is an expensive operation. If the
robot’s prior map information is sparse or inaccurate, then
too much time will be spent replanning in Step 2 for the
approach to be viable.

The D* algorithm (Dynamic A*) [Stentz, 94] was
developed to solve this computational problem. D* produces
an optimal traverse by using incremental graph theory
techniques to dramatically reduce the time required to
replan. For environments with a large number of states, D* is
capable of replanning hundreds of times faster than straight-
forward, brute-force replanning algorithms. Thus, D*



enables replanning to be computationally viable even when
the map information does not match the environment very
well.

Like A*, D* uses a graph of states to represent the
robot ’s  envi ronment,  where each state is  a robot
configuration and the arcs adjoining the states represent the
cost of travelling from state to state. Initially, D* computes
the cost of reaching the goal to every state in the graph given
all known cost information. As the robot follows a sequence
of states to the goal, it may discover a discrepancy between
the map and the environment. This discrepancy is manifested
as an incorrect arc cost. All paths routed through this arc are
invalidated and must be “repaired” [Boult, 87] [Ramalingam
and Reps, 92] [Trovato, 90].

The computational advantage of D* over other
techniques is twofold. First, D* only repairs those paths
likely to be useful to the robot. Second, subsequent repairs
can begin before the first set is completed. The net effect is
less computation and a faster response, thus enabling D* to
guide a robot through an unknown and uncertain robot in
real-time.

Figure  1: Robot Environment with Obstacles

Figure 1 through Figure 4 show D* in action. Figure 1
shows a robot environment, consisting of a start state S, goal
state G, and a field of obstacles shown in grey. Initially, the
robot assumes that there are no obstacles (i.e., map consists
solely of free space). The initial path is a straight line
connecting S to G. As the robot follows the path, its radial
sensor discovers the obstacles and it must replan repeatedly.
Figure 2 shows this process. Only the obstacles detected by
the sensor are shown. The solid line indicates the robot’s
traverse. The dashed line shows the path the robot is
attempting to follow, given all information known in
aggregate at X. This path changes frequently as more
obstacles are discovered (see Figure 3). Finally, Figure 4
shows the entire traverse after the robot has reached the goal.

The basic D* algorithm is described extensively in an
earlier paper [Stentz, 94]. The work was extended to further
improve the computational performance given good
focussing heuristics [Stentz, 95]. D* was tested both in
simulation and on an actual robot [Stentz and Hebert, 95].

Figure  2: Replanning in Response to Detected Obstacles

Figure  3: Robot’s Target Path Changes Repeatedly
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Figure  4: Robot’s Complete Traverse

3 Map Information
The map holds the robot’s knowledge of its environment.
That knowledge may be exact cost values, estimates, or
assumptions. In order to follow the approach outlined in Sec-
tion 2, we need cost values for all arcs in the graph, that is,
the map must be complete in the sense that unknown por-
tions must be estimated or approximated if exact values are
unavailable. Humans do the same. We operate with default
assumptions such as worst case, best case, or average case
scenarios when perfect information is unavailable.

3.1 Environment Model

In order to evaluate different strategies for navigating in an
uncertain environment, we choose a specific type of robot
environment for our experiments. Without a loss of general-
ity, we assume that the robot’s environment is a two-dimen-
sional, eight-connected grid. Each grid cell contains a
positive cost value representing the per unit cost of moving
across the cell. If the cell contains an impassable obstacle,
the cost value isinfinite. The robot’s map is a data structure
of the same form with exact, estimated, or approximate costs
for each corresponding environment cell.

For our experiments, we could use environments with
cost values generated from a uniform distribution, but these
do not typical ly  match environments l ikely to be
encountered by a real robot. Instead, we select a realistic
model template and generate random examples from the
template. We choose to simulate outdoor terrain, and we use
a fractal model of gaussian hills and valleys to do so.

Each environment is 500 x 500 cells and is created by
randomly selecting a location within the environment and
centering a gaussian distribution on the location with a
randomly selected amplitude. A positive amplitude is a hill,

and a negative is a valley. The environment is split into four
quadrants, and a smaller gaussian is added in each quadrant.
This process recurs until the highest resolution is reached.
The result is fractal terrain with “lumpy” hills and valleys.
The elevation gradient is computed at each cell, and a low
cost is assigned to the cell if the gradient is nearly level and a
high cost if the gradient is steep. If the steepness exceeds a
threshold, the cell is assigned an infinite cost (i.e., an
obstacle). These environment costs model a robot that
expends energy moving up and down outdoor terrain.

Figure  5: Randomly-Generated Fractal Terrain

Figure 5 illustrates one such randomly-generated
environment. The grey scales denote a range of costs from
low (white) to high (dark grey). The obstacles are shown in
black.

3.2 Map Strategies

Unless the robot’s environment is completely known, there
exists one or more cells for which the cost value must be
estimated. There are innumerable strategies for estimating
these values, but we limit our discussion to three that we feel
are intuitive and characteristic of what humans do. The three
are described below:

• Optimistic strategy: each cell for which the cost
value is unknown is assumed to be of lowest cost. For
the environment model above, this corresponds to
level, easy-to-traverse terrain.

• Pessimistic strategy: each cell for which the cost
value is unknown is assumed to be of highest cost. For
the environment model above, this corresponds to the
steepest terrain that is still traversable.
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• Average value strategy: each cell for which the cost
value is unknown is assumed to be equal to the aver-
age of known cells in the vicinity.

The optimistic and pessimistic strategies correspond to
best case and worst case approaches, respectively. The
average value strategy assumes that the first moment of the
cost distribution is a good estimate of an individual
member’s value.

Note that none of the above strategies assumes that an
unknown cell contains an infinite cost value (obstacle).
Storing an obstacle in the map where one does not exist
could cause the D* planning algorithm to wrongly assume
that no path exists to the goal. This case would occur if an
obstacle is incorrectly assumed to block the only passageway
to the goal. To circumvent this problem, the pessimistic
strategy uses the highest-cost value that is still admissible.
For the average value strategy, infinite-value obstacles can
not be averaged into the statistic; instead, an amount equal to
the cost of moving around the obstacle is used.

The evaluations for the three strategies are discussed in
the next section.

4 Strategy Evaluations
In this section, we evaluate the optimistic, pessimistic, and
average value strategies by applying them to some ran-
domly-generated environments and measuring the cost of the
robot’s traverse.

4.1 Description of Experiments

For our experiments, we randomly generated 100 environ-
ments according to the model in Section 3.1 and simulated a
robot traverse through each environment. The environments
were 500 x 500 cells and the most difficult (but navigable)
terrain was five times more difficult to traverse than the easi-
est. The robot started in the lower-left corner of the environ-
ment and was given a goal in the upper-right corner. The
robot was equipped with a 20-cell radial sensor that accu-
rately measured cell costs within its field of view. The D*
algorithm was used to move the robot from start to goal.
Each time new information was detected by the robot’s sen-
sor, the map was updated and the path replanned.

The optimistic strategy used a value of 10 for the cost of
unknown cells, and the pessimistic strategy used 50. The
average value strategy was tested several times at different
resolutions. At the lowest resolution (e.g., 1), the average
cost was computed across the entire environment. At
resolution N, the environment was partitioned into N x N
squares, an average was computed within each square, and
the average was stored into the map for each cell in the
square. Resolutions of 1, 10, and 100 were tested,
representing progressively better and more localized
information.

For each strategy, we report the average traversal cost
for the 100 trials and the average rank (where 1 is assigned to
the best strategy and 5 to the worst for each trial).
Additionally, we report the average traversal costs for a
sequence of three traverses across each environment (from
the same start to the same goal). The second and third

traverses used the updated maps produced by their
predecessors during their traverses.

4.2 Results

The results are given in Table 1. As the rank data indicates,
the best strategy is to estimate unknown cells with the aver-
age value of cells in the vicinity. The size of the “vicinity” is
very important, however. As the resolution decreases, the
size of each vicinity increases, and the strategy degrades in
performance. At the limit (i.e., resolution of 1), the strategy
is actually slightly worse than both the optimistic and pessi-
mistic approaches. The differences between the optimistic,
pessimistic, and average value (resolution 1) strategies are
rather small for the first traverse. The traverses for each strat-
egy as applied to the environment shown in Figure 5 are
shown in Figure 6 through Figure 10. These traverses typify
the data set as a whole.

Figure  6: Optimistic Traverse

Rank Trav 1 Trav 2 Trav 3

Optimistic 3.17 53,142 58,946 55,885

Pessimistic 3.75 53,745 46,994 45,845

Avg Res 1 3.81 53,744 46,993 45,611

Avg Res 10 2.65 47,931 44,756 44,387

Avg Res 100 1.62 44,200 43,486 43,468

Table 1:Comparison Results



Figure  7: Pessimistic Traverse

Figure  8: Average Value (Resolution 1) Traverse

The difference between the optimistic and pessimistic
strategies becomes evident in subsequent traverses. The
optimistic assumption is that the unknown world is better
than what has been seen so far. The pessimistic assumption
is that it is worse. Thus, a robot operating with the optimistic
strategy will tend to explore new routes, and a robot
operating with the pessimistic strategy will tend to stay
within explored routes until forced to do otherwise.

Figure  9: Average Value (Resolution 10) Traverse

Figure  10: Average Value (Resolution 100) Traverse

Figure 11 and Figure 12 illustrate this effect. Figure 11
shows three traverses (numbered) through the environment
in Figure 5 using the optimistic strategy. The largely straight-
line path to the goal taken during the first traverse is close to
the lowest-cost possible, yet in subsequent traverses the
optimistic strategy searches on either side for a better route.
For the typical environment, this strategy does not pan out
and subsequent traverses are higher in cost.



Figure  11: Three Optimistic Traverses

Figure  12: Three Pessimistic Traverses

Figure 12 shows three traverses through the same
environment using the pessimistic strategy. Rather than
venturing into new terrain, the pessimistic strategy optimizes
the path within the swath sensed during the first traverse.
Thus, subsequent traverses are lower in cost. The same can
be said for the average value strategies at all resolutions,
with the exception that they are slightly more willing to
venture from the previous path to “cut a corner” than the
pessimistic strategy.

Figure  13: Atypical Terrain Environment

Figure  14: Optimistic Traverses Explore to Find Best Route

Figure 13 shows an atypical environment from the data
set. In this case, the environment consists of a few very large
obstacles rather than a scattering of smaller ones. Three
optimistic traverses are shown in Figure 14. On the first
traverse, the robot takes the high-cost route around the large
obstacle to left. In subsequent traverses, it optimistically
searches to the right and discovers a better route that
significantly reduces the traversal cost.
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Figure  15: Pessimistic Traverses Optimize Locally

Figure  16: High-Resolution Traverses Converge Quickly

The pessimistic robot also takes a high-cost route on its
first attempt (Figure 15). Subsequent traverses only optimize
locally, and the robot never discovers the lower-cost route to
the right. The medium- and high-resolution average value
strategies (Figure 16) have enough prior map information
available to focus quickly on the best route. Subsequent
traverses lead to slightly lower-cost routes.

Thus, for complicated environments with convoluted
paths to the goal for which too little prior information exists,

the optimistic strategy is better than the pessimistic one since
some exploration is required to locate the global minimum.

5 Conclusions
In conclusion, we have determined that for a class of outdoor
terrain environments, estimating unknown portions of the
environment with known portions in the vicinity yields the
lowest-cost traverse. The smaller the vicinity the better. In
the absence of such information, the optimistic or pessimis-
tic strategies can be used. Repeated pessimistic traverses
tend to converge to a local minimum in the solution space;
repeated optimistic traverses tend to jump around the space
and are more likely to discover the global minimum at the
expense of local improvements.

In the future,  we wi l l  explore a probabi l is t ic
representation for the map and will employ a decision-
theoretic approach for minimizing the cost of the traverse.
This approach fits well within the D* replanning paradigm.
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