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A Symbolic Formula for a C-obstacle

1 Background

Let the robot A and the obstacle O be planar convex polygons. Our goal in this handout
is to derive a closed-form formula for the boundary of the c-obstacle CO. That is, to find a
continuous real-valued function d(q) on c-space, d : C → IR, such that

bdy(CO) = {q ∈ C : d(q) = 0} where q = (x, y, θ).

where bdy(S) denotes the boundary of S. As discussed below, the boundary of CO consists
of smooth two-dimensional patches that meet along curved or straight edges. Let nA and nO

be the number of vertices of A and O, respectively. From the formula presented below we
shall see that bdy(CO) consists of 2nAnO patches. The formula will be union of 2nAnO terms,
each representing one patch. Each patch term will be in turn be defined by the intersection
of several inequalities.

Recall that A(q) is the set of points occupied by the robot when placed at configuration
q. Each two-dimensional patch comprising the boundary of CO corresponds to one of two
generic types of contact.

• Type EV contact: Configurations q where an edge of the robot, denoted EA
i (q),

contacts a fixed vertex oj of the obstacle O. These contacts are often called Type A

contacts in the robotics motion planning literature, in deference to nomenclature use
in the original paper on configuration space by Lozano-Perez, Mason, and Taylor.

• Type VE contact: Configurations q where a vertex ai(q) of A contacts a fixed edge
EO

j of O. These contacts are often called Type B contacts in the literature.

The fixed-θ slice of each patch is a straight-line segment when both robot and obstacle are
polygons. As the robot rotates, the segments of a Type EV patch rotate (and therefore a
Type EV patch is a “ruled surface”), and the segments of a Type VE patch translate parallel
to the associated edge of O.

The curves separating neighboring patches are of two types. Those that lie in a fixed-θ slice
correspond to edge-edge contact. Those that lie transversally to the fixed-θ slices correspond
to vertex-vertex contact. The vertex-vertex ones have the property that their projection onto
the (x, y)-plane is a circular arc. See Figure 1.

2 The Formula

First we derive a formula for a Type EV patch. Consider the set of all configurations q

where the edge EA
i (q) touches the vertex oj, such that the interiors of A and O do not
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Figure 1: Type EV and Type VE patches

overlap (Figure 2(a)). Let l be the line underlying the edge EA
i (q). The equation of l is

νA
i (q) · (x − ai(q)) = 0. The first constraint is that oj must lie on l:

νA
i (q) · (oj − ai(q)) = 0. (1)

This defines the smooth two-dimensional surface underlying the patch. Second, regardless
of where oj lies on l, the range of allowed orientations for A such that its interior does not
overlap the interior of O is determined as follows. The allowed orientations are exactly those
were the vertices oj−1 and oj+1 lie in the halfspace bounded by l which does not contain A.
In formulas:

νA
i (q) · (oj−1 − ai(q)) ≥ 0

and
νA

i (q) · (oj+1 − ai(q)) ≥ 0.

The intersection of these inequalities with (1) gives the “upper” and “lower” edges of the
patch, corresponding to edge-edge contacts. Last, oj must lie within the edge EA

i (q). Con-
vince yourself that this is captured by the following two inequalities:

(oj − ai(q)) · (ai+1(q) − ai(q)) ≥ 0

and
(oj − ai(q)) · (ai+1(q) − ai(q)) ≤ ‖EA

i ‖
2
.

(‖EA
i ‖ is the length of the edge EA

i (q). It does not depend on q). These inequalities determine
the “left” and “right” edges of the patch, corresponding to vertex-vertex contacts. The patch
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Figure 2: Type EV contact (left), and Type VE contact (right)

is described by the conjunction (equivalently, intersection of the respective sets) of these five
terms.

Consider now a Type VE patch, where the vertex ai(q) touches the edge EO
j , such that the

interiors of A and O do not overlap (Figure 2(b)). Convince yourself that the conjunction
of the following five terms exactly characterizes the patch:

νO
j · (ai(q) − oj) = 0,

which is the surface underlying the patch,

νO
j · (ai−1(q) − oj) ≥ 0 and νO

j · (ai+1(q) − oj) ≥ 0,

which are the upper and lower edges,

(ai(q) − oj) · (oj+1 − oj) ≥ 0, and (ai(q) − oj) · (oj+1 − oj) ≤ ‖EO
j ‖

2
,

which are the left and right edges.

In total we have

bdy(CO) =





⋃

1≤i≤nA,1≤j≤nO

(Type EV patch)





⋃





⋃

1≤i≤nA,1≤j≤nO

(Type VE patch)



 . (2)

where the shorthand notation “Type EV patch” stands for the set of equalities and inequal-
ities that define a Type EV patch. There are exactly 2nAnO terms, which is the number of
distinct patches comprising the boundary of CO.

The continuous function, d(q), that implicitly describes the boundary can be defined as
follows. Given two sets described by S1 = {q : α(q) ≤ 0} and S2(q) = {q : β(q) ≤ 0}, S1

⋂

S2
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can be replaced by the inequality max {α(q), β(q)} ≤ 0 and S1

⋃

S2 can be replaced by
min {α(q), β(q)} ≤ 0. Since a patch is defined as the intersection of inequalities and the
c-osbstacle boundary is defined as the union of patches, Equation (2) can be constructed
from nested sequences of min and max operations.
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