CDS 110(b) Final Exam
(Winter 2011/2012)

Instructions

1. Limit your total time to 5 hours. It is okay to take a break in the middle of the exam if
you need to ask the Instructor or TA a question, or to go to dinner. If you run out of time,
indicate how you would proceed as explicitly as possible.

2. You may use any class notes, books, or other written material posted on the course web site.
You may not discuss this final with other class students or other people except me or the
class Teaching Assistants.

3. You may use Mathematica, MATLAB, or any software or computational tools to assist you.

4. You cannot use the internet to solve these problems, except for material on the course web
site.

5. The final is due by 5:00 p.m. on the last day of finals.

6. The point values are listed for each problem to assist you in allocation of your time.



Problem 1: The goal of preserving fuel or energy use is critical for spacecraft design and deploy-
ment. In this problem you will consider a highly simplified version of a satellite attitude control
problem. Assume a single rigid body satellite free=floating above earth is constrained to move in
a plane. In this simplified model, 8 is the angle which describes the satellite. The dynamics which
relate the control input, u to the satellite’s attitude are:

16 = u (1)

where I is the rotational inertia of the satellite, and u can be interpreted as the torque applied to
the satellite. In practice, the torque can be provided by an inertia wheel or by a thruster.

Assume that the spacecraft must carry out a reorientation maneuver, starting from an initial
orientation 0y at time tg — 0, and ending at a final orientation, 0, at t; = T.

Part (a): (5 points) If a reaction wheel is used to provide the reorienting maneuver, then the cost
of reorientation can be modeled as

T
J(u) = /0 (1 4+ au?)dt (2)

where o > 0 is a weighting factor that trades off maneuver time (o = 0 gives the minimum time
solution, while & — oo gives the minimum fuel solution). First, convert this system to state space
form. For convenience, you can assume that the rotational inertia takes unit value: I = 1. Write
down the necessary conditions for optimality using Pontryagin’s maximum principle, including
boundary conditions.

Part(b): (5 points) Sketch the time-history of the control, u, reorientation rate, 6, and orientation,
0, during a reorientation maneuver. You do not need to solve these equations explicitly. Instead,
sketch the qualitative behavior of the solution. You may want to consider three cases: (1) minimum
time (a = 0); (2) minimum energy (o — o0), and (3) balance between minimum time and minmum
energy.

Part (c): (10 points) When a thruster is used (e.g., a compressed gas canister, whose loss of gas
is roughly proportional to the amount of thrust generated), one can approximately model the fuel
use as:

T
T(u) = /0 (1 + o lu)dt (3)

Show that the optimal control solution for this cost is a bang-deadzone-bang solution, and write
the switching conditions.

Part (d): (5 points) Sketch qualitatively the solution of part (c) for a nonzero value of a.

Problem 2: Consider the 1-dimensional second order system
mZ = u + 1 (4)

where z is the system state, u is the control input, and 7 is white, zero mean, Gaussian noise.
Assume that the discrete time equivalent of this system is:
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where 7 is white, zero mean, Gaussian noise with covariance Qp, and dt is the sampling time of
the model discretization. Also assume that the position, z, is measured with a noisy sensor, so that

o= ot = 103 )

where wy, is a zero mean, white, Gaussian noise with covariance Ry.

Part (a): (5 points) The goal is to estimate both the position and velocity of the moving system.
Assuming m = 1 and 0t = 0.01, solve for the steady state Kalman Filter gains analytically.

Part (b): (5 points) Using the same parameter assumptions as above, plot the closed loop estimator
pole locations when the Signal-to-Noise Ratio \/Qy /Ry takes values of 0.1, 1.0, and 10.0. What is
the difference

Part (c): (10 points) During the course, we studied in detail the fized lag smoother. We briefly
defined the fized point smoother, but did not study it in detail. In this part of the problem you are
to develop a fixed point smoother for the initial state of the dynamical system described in this
problem. Assume that at time ¢( the initial state of the system is an uncertain variable with mean
and covariance:
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Recall that a fixed point smoother computes the estimate i, of a state z at times k = j,j+ 1,7+
2,.... Assuming that u = 0, compute the estimates of the initial position, Zy;, and initial velocity,

Oo|k, for £ =0,1,2,3,4,5, and a signal-to-noise ratio of 1.



