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Problem 1: Kalman filters are often an integral part of on-board vehicle navigation systems.  Many on-
board navigation systems use an Inertial Measurement Unit (IMU), which provides (noisy) 
measurements of the vehicle’s acceleration, as well as gyroscopes to provide (noisy) measurements of 
the vehicle’s rate of rotation.  The IMU measurements can be coupled with those of a GPS receiver to 
provide high rate updates on vehicle position between GPS measurements, and to smooth out GPS 
measurement errors .  Particularly during GPS blackouts the IMU provides the only vehicle position 
reference, which may be essential for vehicle navigation. 

In this highly simplified version of the navigation problem, we will assume that a vehicle whose motions 
are restricted to the x-axis contains an accelerometer which can measure acceleration along that axis.  
Let x denote the vehicle position. The vehicle dynamics are given by: 

u
dt
dxb

dt
xdm =+2

2

 

Where m is the vehicle mass, b is the vehicle damping coefficient (accounting, e.g., for wind resistance), 
and u is the input (in units of force) to the vehicle.  For this problem, let m=1000 kg, and b/m=0.03 s-1 

• Part (a): develop a discrete time dynamical equation of motion for this system 
• Part (b): assume that the IMU can measure vehicle acceleration at a rate of 20 Hz, with an 

accuracy of 0.0981 m/s2 (which is a 1% measurement accuracy). Further assume that GPS 
measurements are received at a rate of 1 Hz, with an accuracy of 5.0 meters.  Assume that both 
measurement uncertainties can be modeled as zero mean Gaussian distributed white noise with 
std. deviation equal to the stated accuracies.  Assuming there are no external disturbance forces 
acting on the vehicle, compute the time history of the estimation covariance, and plot the 
covariance associated with the positional portion of the covariance for the first 20 seconds of 
vehicle motion.  Assume that at the beginning of the motion, a GPS measurement of vehicle 
position is available and an IMU measurement of vehicle acceleration is available. 

 

Problem 2:   Fixed lag smoothing can improve the estimate of vehicle position at the cost of delay in 
making that information available.  For the same system described in Problem #1, find the fixed lag 
smoothing equations for a smoother which delays the position estimate by 2 seconds (e.g., by two 
delays in the GPS measurement cycle).  What is the covariance improvement of the fixed lag smoother 
over that of the Kalman filter? 

 

Problem 3:  We derived the form of the discrete time Kalman filter under the assumption that at all 
times tk the process noise, ηk, and the measurement noise, ωk, are independent.  However, in some 



cases these disturbances may be correlated.  Assume that ηk and ωk are zero mean, Gaussian, white 
discrete time noise processes with the following properties: 
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where E is the expectation operator, and δkl is the dirac delta function: δkl = 1 when k=l, δkl = 0 otherwise.   
Derive the form of the discrete time state estimate mean and covariance update equations under these 
conditions. 

 


