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1. Introduction

Biological neural networks are large systems of complex elements interacting through a
complex array of connections. Individual neurons express a large number of active con-
ductances (Connors et al., 1982; Adams & Gavin, 1986; Llinds, 1988; McCormick, 1990;
Hille, 1992) and exhibit a wide variety of dynamic behaviors on time scales ranging from
milliseconds to many minutes (Llinds, 1988; Harris-Warrick & Marder, 1991; Churchland &
Sejnowski, 1992; Turrigiano et al., 1994). Neurons in cortical circuits are typically coupled
to thousands of other neurons (Stevens, 1989) and very little is known about the strengths of
these synapses (although see Rosenmund et al., 1993; Hessler et al., 1993; Smetters & Nelson,
1993). The complex firing patterns of large neuronal populations are difficult to describe let
alone understand. There is little point in accurately modeling each membrane potential in a
large neural circuit unless we have an effective method for interpreting (or even visualizing)
the enormous numerical output of such a model. Thus, major issues in modeling biological
circuits are: i) How do we describe and interpret the activity of a large population of neurons
and how do we model neural circuits when ii) individual neurons are such complex elements
and iii) our knowledge of the synaptic connections is so incomplete. This review covers some
of the approaches and techniques that have been developed to try to deal with these problems.
Although they cannot be considered solved, progress has been made and, by combining a
number of different techniques, we can put together a fairly comprehensive description of
at least some aspects of how neural systems function. In this review, I will concentrate on
mathematical and computational methods with applications provided primarily to illustrate
the methods. The reader can consult the references for applications to specific neural systems.

Four general techniques have proven particularly valuable for analyzing complex neural
systems and dealing with the problems mention above:

1. Patterns of activity in neural networks only gain functional and behavioral significance
when they are interpreted correctly. This is a two step process. First, the spike trains
of individual neurons must be considered and then the activity of an entire population
of neurons must be interpreted collectively. The second step is described in 2) below.



The spike train produced by a single neuron can be extremely complex, reflecting in
part the complexity of the underlying neuronal dynamics, problem ii). A method for
analyzing neuronal spike trains based on a linear filter (Bialek 1989; Bialek et al., 1991;
Reike, 1991) has been developed and applied to the problem of decoding the information
contained in the spike trains of single neurons (Bialek 1989; Bialek et al., 1991; Reike,
1991; Warland et al., 1991, Theunnisen, 1993). This approach is reviewed in section 3.

In the vast majority of cases, neuronal spike trains are characterized by a firing rate.
This characterization is often thought to eliminate all information arising from spike
timing and to be quite distinct from the linear filter approach, but this is not the
case. As shown in section 3, precisely defined firing rate variables are a special case of
decoding schemes based on linear filters. Firing rates that can be generated by linear
filters (see section 3) provide a concise description of the output of a single neuron that
often contains enough information, either individually or in conjunction with population
decoding methods discussed in sections 5 and 6, to describe and interpret neuronal
activity.

. In many cases, information is represented by the activity of an ensemble of neurons in
a collective and distributed manner (Knudsen et al., 1987; Konishi, 1987, Sejnowski,
1988; Konishi, 1991; Eichenbaum, 1993) as discussed in section 4. Various methods for
decoding the information represented by neural ensembles have been developed and ap-
plied to a number of systems (Georgopolous et al., 1986; Wilson & McNaughton, 1993;
Salinas & Abbott, 1994). These are reviewed in sections 5 and 6. The ability to decode
the activity of a neural network is a tremendous advantage both for experimentalists
and modelers. In addition to providing a functional interpretation of neuronal output,
decoding allows the complex activity of a neural circuit to be described much more
concisely without loss of functionally relevant information. The impact that various
neuronal and synaptic properties have on the activity of a large network is typically
both complex and subtle. However, the effect of these same properties on the value of
a coded quantity can sometimes be understood and interpreted quite easily and clearly
(Abbott & Blum, 1996). Examples are given in section 9. In cases where it can be ap-
plied, decoding provides an effective solution to problem i). By combining the optimal
linear filter with efficient methods for decoding populations of neurons, it is possible to
extract the maximum amount of information from a neural circuit.

It should be stressed that decoding is considered to be a tool for analyzing what a neural
network is doing. The methods used by the nervous system to interpret and respond
to patterns of neuronal firing do not necessarily have any relationship to the decoding
methods used here. However, we do assume that the result of the decoding procedure
provides an accurate measure of the information being represented by a neural network
(for a cautionary note see Salzman and Newsome, 1994).

. Problem iii), the lack of knowledge of synaptic strengths, is the most severe of the three
problems being addressed. The difficulty of measuring the strength of even a single
synapse and the enormous number of synapses severely limit the amount of information
that can be obtained about connections in large neural networks. However, a great deal
of information is available about how synaptic strengths can change due to activity
through long-term potentiation (LTP) (Bliss & Collingridge, 1993; Malenka & Nicoll,
1993) and depression (LTD) (Artola & Singer; 1993). Thus, it makes more sense to



study the effect of synaptic changes than of synaptic values. Synaptic learning rules
(see section 8) based on or inspired by LTP and LTD data can be used to compute the
changes in synaptic strengths that arise from specific training experiences. The effect
of these changes can be studied by looking at the resulting modifications in network
activity and decoding them. This allows us to examine the impact of training experience
and learning on network function, as shown in section 9. If these changes are small, we
have the added advantage that their impact can be determined by a linear computation
which resolves many of the problems associated with intrinsic neuronal complexity,
problem ii). If the changes are larger, calculating their effects is more ambiguous but
the linear approximation can still serve as a basic guideline. This approach is taken in
sections 10 and 11.

4. Describing and decoding neuronal activity is only one aspect of the problem of mod-
eling a neural network. Another challenge is to build a model that accounts for that
activity and describes how it changes with time. In cases where firing rates are used to
describe activity, it is tempting to try to build a dynamic model based purely on firing
rates, as is frequently done (Wilson & Cowan, 1972 & 1973; Hopfield, 1984; Frolov &
Medvedev, 1986; Abbott, 1991a; Amit & Tsodyks, 1991a & 1991b; Ermentrout, 1994).
The firing of a neuron is affected by a large number of variables such as the state of
activation and inactivation of numerous ion channels and the concentration of calcium
and various other second messenger molecules inside the cell, that cannot be described
purely in terms of the firing rate itself. However, a firing rate model does not have to
compute rates from first principles on the basis of ion channels and other fundamental
neuronal characteristics. Instead, mathematical fits of measured rates can be incorpor-
ated into these models phenomenologically and augmented with various approximations
for unmeasured elements of the model. This is the approach used in sections 7-13. The
dynamics describing how the firing rate changes over time is greatly simplified if the
integration time used to define the firing rate is longer than any intrinsic neuronal time
scale affecting firing, as discussed in section 13. In this case, measured and calculated
static properties can be used to construct a dynamic model. Although firing-rate mod-
els are often highly simplified, this is not an essential feature. It is possible to calculate
and include nonlinear effects, some of which are considered in section 12.

It is difficult to interpret results from modeling studies of neural networks unless the
patterns of firing that they produce can be decoded in some behaviorally relevant way. For
this reason, | will consider cases where the firing of a single neuron or a population of neurons
can be correlated with some external variable 2 which may be a sensory input, the coded
value of an input from or an output to another network, or a motor output. The quantity
x can be a single number or it can be a vector array of numbers. | will mainly consider
the case of a single coded quantity, leaving the discussion of coded vectors to section 6. A
classic experimental procedure in neuroscience is to find a neuron with a firing pattern that
is related to some sensory stimulus and then to study the response properties of that neuron
while varying the stimulus. The same paradigm can be carried out replacing the sensory
stimulus with a motor output. Experiments of this sort have built up a large catalog of
neuronal responses and their external correlates, discussed in section 4. For clarity, I will
refer to the quantity = being coded as the stimulus or stimulus value. However, it should be
kept in mind that = could equally well represent a motor output.



Although this review will concentrate on methods, some results will be given to illustrate
these methods. Section 9 considers the effect that training has on the coded value of a
stimulus. This phenomenon has applications to memory and learning. Section 10 provides a
simple example of the activity-dependent development of a neuronal response tuning curve. In
sections 11 and 13, a resonance phenomenon that may be used as an amplification mechanism
for recognition of an input is analyzed.

2. Spike Coding

The fundamental unit of information and signaling in the nervous system is the action
potential. Because an action potential is a stereotyped response, its shape and amplitude do
not convey information. Instead, all information is carried by action potential timing. The
response of a single neuron can be specified by listing the times #1,%9,¢3,... when it fires
action potentials. The spiking output of a neuron can be characterized as a series of delta
functions at the times when action potentials occur,

s(t) = Zé(t —t). (2.1)

This representation of neuronal firing is complete but awkward to work with because s(t) is
not a well-behaved function and because a complete listing of individual spike times may be
more information than can be handled practically or computationally. These problems are
resolved by spike decoding.

3. Spike Decoding

In the most general terms, spike decoding is a method for generating a time-dependent
variable r(t) that describes, in some useful way, the spike train being produced by a neuron.
One way to define r(t) is by using a linear filter (Bialek, 1989; Bialek et al., 1991; Reike,
1991). This expresses the variable r(t) characterizing the spike train s(¢) as a convolution of
the spike train signal with a specific kernel,

r(t) = /Oodt' K(t)s(t — 1) . (3.1)

The best kernel K to use in equation (3.1) depends on what information r(¢) is suppose
to convey. Suppose that a neuron is firing in response to some stimulus z(¢). It is common
for modeling studies to address the question: How does the stimulus produce the observed
spike train? However, decoding allows us to ask the question: How is information about the
stimulus encoded in the series of spikes being produced? To address this question we can
decode the spike train by constructing an estimate z.g (¢) of the stimulus value. One method
of decoding is to use r(t) itself as a direct estimate of the value of the stimulus (Bialek, 1989;
Bialek et al., 1991; Reike, 1991),

Test(t) = r(t) . (3.2)
The key is to find the kernel that generates the 2.4 (¢) providing the best possible direct
estimate of the value of the stimulus. To do this we demand that z.4(f) be as close to
the stimulus value z(¢) as possible by minimizing the square of the difference between them
averaged over time,

/dt [2e5t(t) — 2()]* = minimum . (3.3)



Such an approach has been used with success to reconstruct coded stimuli from the spike
trains of movement-sensitive neurons in the blowfly (Bialek et al., 1991), as well as neurons
in other systems (Bialek, 1989; Warland et al., 1991; Reike, 1991; Theunnisen, 1993). The
kernel that accomplishes this task can be computed by the method of Fourier transforms
(Bialek, 1989; Bialek et al., 1991) or it can be constructed by applying a modification rule
that gradually changes the kernel to improve the match between the true stimulus and the
predicted value (Sen & Abbott, unpublished).

To describe the kernel it is easiest to divide time up into discrete intervals t = nAt for
integer n and to define the kernel in terms of a discrete array by

K(nAt) =K, . (3.4)

For practical reasons, the kernel is defined to be nonzero over a finite time range so that
K, = 0 for n > M with M some fixed value. The spike train is similarly defined by a
variable

nAt

Sn :/ dt s(t) (3.5)

(n=1)At
that is equal to the number of action potentials occurring in the interval (n—1)At < t < nAt.
If At is small enough, S,, will be either zero or one. In terms of these variables, the response
function which is to provide the estimate can be written as

M
Test(nAL) = > KpnSpom - (3.6)
m=0

The kernel modification rule is based on the minimization condition (3.3). Using the gradient
decent algorithm we find that the modification

Ky — Ky + c[2est(nA(L)) — 2(nAt)] Spem (3.7)

for m = 0,..., M, with € a small parameter, will reduce the squared difference between
Test(t) and z(t).

The procedure for generating a kernel is to start with random elements K, to compute the
resulting estimate x4 (¢) corresponding to a stimulus z(#) and then to apply the modification
rule (3.7) repeatedly until the difference between z.4(t) and z(¢) has decreased to a desired
level of accuracy. Figure 1 shows the results of such a process. A quasi-periodic signal
x(t) was generated and used as a current input to an integrate-and-fire model neuron. The
decoded signal z.5 (t) was then computed from the spike train produced by the model neuron
using equation (3.6). The kernel used initially in figure 1a was random, as shown in figure
1b, and the resulting estimate does not match the input data. Figure 1c shows a comparison
of z.s:(t) and z(t) after the modification process constructed the kernel seen in figure 1d.
This kernel provides a good estimate of the signal for large positive values that produce many
spikes. For smaller or subthreshold inputs the reconstruction is not as accurate. There is also
a small delay in the reconstructed value caused by the latency to the first spike in response
to an input. Because the modification rule develops the kernel over an extended period, the
final form of the kernel reflects both the firing properties of the neuron and the statistics of
the input data stream.

Generating a direct estimate of the stimulus signal, z.s(t) = r(t), is not the only thing
that can be done with a linear filter. Other measures of the spike train given by r(¢) may also



be useful. For example, the method can be used when the stimulus signal is unknown. In
such cases, K can be chosen so that the information content or entropy of r(¢) is maximized
(Abbott & Salinas, unpublished). This is done by making the distribution of r values over
time as constant as possible. Alternately, the kernel can be chosen to generate an r(t) that
can be considered to be a measure of the firing rate of the neuron.

In many cases, the rate of action potential firing is the desired measure of neuronal re-
sponse to a stimulus, although additional information may be encoded in other characteristics
of the firing patterns (Optican & Richmond, 1987; Gozani & Miller, 1994; Middlebrooks et
al;, 1994). Despite the fact that firing rate is used in this way in most experimental and
theoretical papers, often little care is taken in defining what is meant by a firing rate. Since
neurons do not fire with perfect periodicity indefinitely, some care must be taken in defining
what we mean by the firing rate of a neuron. One method used to define the firing rate is
to choose a time interval, count the number of spikes appearing during this period of time
and then define the rate as the number of spikes divided by the length of the interval. This
measure of the firing rate has the undesirable property that it is only defined at discrete values
of the time. Some neuron models actually do use such a definition and update the firing rate
discontinuously at discrete time intervals (McCullock & Pitts, 1943; Hopfield, 1982; Amit,
1989; Hertz et al., 1990). However, it is often more useful to generate a firing rate variable
that is defined at all times. The oxymoron ‘instantaneous firing rate’ is often used to denote
such variables.

The linear filter can be used to define a firing rate variable if an appropriate constraint
is place on the kernel. Suppose that the neuron is firing at a constant rate with period T.
We require that, if r(¢) is to be considered a firing rate variable, its value averaged over one
period 7" must be equal to the firing rate 1/7". From definition (3.1), this means that we

must haVe
/ d / d ! Kr( I) ( I) — (3 8)
1 2 v )s(t 12 . .

By switching the order of integration and eliminating the common factor of 1/7, this can be
rewritten as the condition

00 T
/ dt’ K(t')/ dt s(t—t')y=1. (3.9)
0 0

The second integral is always equal to one when the neuron is firing with period 1" so we find
that r(t) will qualify as a firing rate variable provided that

/Oodt Kit)=1. (3.10)

Such a firing-rate variable is just a special case of a linear filter with the kernel required
to satisfy condition (3.10). Conversely, every decoded signal produced by a linear filter
is proportional to a quantity that can be considered to be a firing rate. Condition (3.10)
obviously leaves an infinite variety of kernels that can be used. Some possibilities are:

K(t) = ;exp(—t/r) (3.11)
K(t) = %exp(—t/r) (3.12)



or

K (1) = —— [exp(=t/r1) — exp(—t/7)] (3.13)

T — T2

with 71 > 7. All three of these have obvious interpretations in terms of down-stream
processing of the spike train since forms like these are often used to characterize postsynaptic
responses. The exponential kernel (3.11) defines the firing rate as a low-pass filtered version
of the spike train. The resulting firing rate jumps up every time there is a spike and decays
exponentially toward zero with time constant 7 when no spikes are present. The discontinuous
jump in the firing rate produced by this kernel is eliminated by the other two kernels, the
alpha-function (3.12) and difference of exponentials (3.13), because they do not respond
instantaneously. The second of these, (3.13), has the advantage that the rise time 7, and fall
time 7, can be adjusted independently.

4. Population Coding

An extremely widespread form of neural coding involves large arrays neurons that repres-
ent information collectively as an ensemble (Knudsen et al., 1987; Konishi, 1987; Sejnowski,
1988; Konishi, 1991; Eichenbaum, 1993). In such arrays, individual neurons are broadly-
tuned to a stimulus value. Individual firing rates depend on and reflect the value of the coded
information, but to be accurate the decoding should be based on action potentials coming
from many neurons. Many examples of information coded by the firing rates of arrays of
tuned neurons can be given. A partial list of neuronal arrays and the corresponding coded
quantities includes: neurons in the primary visual cortex of a cat coding the orientation of
a bar of light (for a review see Orban, 1984), the direction of arm movements of a monkey
coded by neurons in its motor cortex (Georgopolous et al., 1986, 1988 & 1993), neurons in
the superior colliculus encoding saccade direction (Van Gisbergen et al., 1987; Lee et al.,
1988), interneurons in the cercal system of the cricket coding the direction of a wind stimulus
(Bacon & Murphey, 1984; Miller et al., 1991; Theunissen & Miller, 1991; Theunissen, 1993)
and a similar system in the cockroach (Camhi & Levy, 1989), the direction of a sound stim-
ulus coded in neural arrays of the barn owl (Knudsen & Konishi, 1978; Konishi, 1991), the
position of a rat in its environment coded by hippocampal place cells (O’Keefe & Dostovsky,
1971; O’Keefe & Nadel, 1978; O’Keefe, 1979; Wilson & McNaughton, 1993), M'T neurons
coding visual motion direction (Maunsell & Newsome, 1987) and neurons coding echo delay
in the bat (O’Neill & Suga, 1982).

Population coding has been the subject of a number of theoretical analyses (Paradiso,
1988; Vogels, 1990; Foldiak, 1991 & 1993; Zohary, 1992; Snippe & Koenderink, 1992; Seung
& Sompolinsky, 1993; Touretzky et al., 1993; Salinas & Abbott, 1994), some related to the
issue of hyperacuity (Baldi & Heiligenberg, 1988; Altes, 1989; Lehky & Sejnowski, 1990;
Zhang & Miller, 1991) and others connected with network models (Lukashin, 1990; Burnod
et al., 1992; Van Opstal & Kappen, 1993).

In experiments involving coding by arrays of tuned neurons, the average responses or
tuning curves of individual neurons are measured as functions of the value of the stimulus
variable z. 1 will use an index that runs from one to IV, the total number of neurons in the
array, to label individual neurons. The average firing response of neuron 7 to a stimulus that
takes the value x is denoted by fi(z). For the purposes of this review, I will consider an
idealized array of tuned neurons with Gaussian tuning curves of identical shape but varied



optimal stimulus value,
fil#) = rmaz exp (— (& — y)2/20%) (4.1)

as shown in figure 2. The parameter y; is the stimulus value at which neuron ¢ responds with
its maximum average firing rate ry,,,. The width of the tuning curves is 207.

If the tuning curves cover the range of z densely and they overlap as in figure 2, we can
approximate sums over neurons by integrals over the positions y where the neurons fire at
their maximum rates, as follows

N
Z — p/dy . (4.2)

Here p is the neuronal tuning curve density which is the number of neurons covering a unit
range of z. We will ignore the edges of the array where the coded value reaches the limits of
its range by making this range infinite. Some useful results of these approximations are:

N
S Sil@) fily) = VApo gt exp (— (2 — y)*/40}) (4.3)
=1

from which we find

_ VTP

3o 2y = 7) exp (~(z — y)?/40%) (4.4)

N

and

N 2
> (7)) = Ve (4.5

=1

where the prime denotes differentiation. Another useful formula for the derivations that follow

/dz exp (_ (z—2)* (y- 2)2) _ V27010 exp (_M) (4.6)

20% 202 /02 ¢ o2 2(0? + 03)

These equations will be used to derive the results given in the following sections.

5. Population Decoding

When information about a stimulus or motor output is coded by an entire ensemble of
neurons, decoding the full population response requires procedures for combining the firing
rates of many neurons into a population ensemble estimate. Georgopoulos and collaborators
developed one such approach by defining the population vector relating activity in the motor
cortex of the monkey to the direction of arm movements (Georgopoulos et al., 1986, 1988 &
1993). The population vector method developed for this system has been used in similar arm
movement studies of premotor cortex (Caminiti ef al., 1991), parietal area 5 (Kalaska et al.,
1983) and cerebellum (Fortier et al., 1989). In addition, the vector method has been applied
to other systems such as primary visual cortex (Gilbert & Wiesel, 1990), parietal visual
neurons (Steinmetz et al., 1987) and inferotemporal neurons in the monkey responding to
human faces (Young & Yamane, 1992). This last application involved the use of multi-
dimensional scaling to relate the responses of face cells to the encoding of a two-dimensional
vector. Wilson and McNaughton (1993) have used a different method to decode the output of



position selective place cells (O’Keefe & Dostovsky, 1971; O’Keefe & Nadel, 1978; O’Keefe,
1979) in the hippocampus of the rat. A number of different methods can be used to decode
neural population activity in a variety of systems (for a review see Salinas & Abbott, 1994).

Decoding the activity of a neural ensemble means computing an estimate of the coded
quantity z.s from the firing rates of neurons in the ensemble. This is similar in spirit to
the procedure discussed in section 3 but this time the estimate is based on the firing of
many neurons, not one. Typically, this calculation makes use of the tuning curves f;(z) of
individual neurons z = 1,2,..., N responding to the stimulus z. If the decoding schemes
works well, z.s will typically be close to the true value of the stimulus z. However, this
need not always be the case. We will use decoding in another way as well. If something in
a neural network changes, such as the strengths of synapses between neurons, this may shift
the value of z.4 constructed by the decoding scheme. In this case, the shift in z.5 may tell
us something about the meaning and significance of the synaptic changes that have occurred.
As discussed in section 9, if 2.4 is different from z this may have functional significance
rather than reflecting inaccuracy of the decoding scheme.

Several methods can be used to construct a population-based estimate of a coded signal.
We will denote the collection of all firing rates r; for ¢ = 1,2, ... N by the notation r and like-
wise the collection of tuning curves by f. T'he most sophisticated methods require knowledge
of the probability that the stimulus value is  given that the population firing response was
r, denoted P(z|r). The commonly used maximum likelihood method consists of finding the
value of x with the maximum probability given a set of firing rates and using this for the es-
timate. Thus, P(z.s|r) is maximized. P(r|z), the probability of a given stimulus producing
a set of firing rates, can be obtained from experimental measurements and then P(z.q|r)
can be determined from this by Bayes’ theorem

P(z|r)P(r) = P(r|z)P(z) . (5.1)

Because the maximum likelihood procedure maximizes the probability with respect to the
value of z, the factor P(r) is not relevant and we can express the maximum likelihood
condition as

P(r|zest) P(2est) = maximum. (5.2)

If the population of neurons is large and the necessary probabilities are know, the max-
imum likelihood method is probably the optimal decoding procedure to use. However, if the
population of neurons being used in the decoding is not large, there is no rigorous theoret-
ical justification for using the maximum likelihood method. Instead, it may be better to use
a Bayesian decoding scheme that is guaranteed to minimize the average squared difference
between the estimated value and the true stimulus value. This estimate is just the average
value of z corresponding to the probability distribution P(z|r),

Test = /dac zP(z|r) . (5.3)

It many cases, the probability P(r|z) may not be known. A decoding method that has
been used in this case (Churchland & Sejnowski 1992; Wilson & McNaughton 1993) chooses
the estimated value so that

N N 1-1/2 N -1/2
Z rifi(Test) [Z rf] [Z ff(xest)] = maximum . (5.4)

=1 =1 =1



Both r and f can be considered to be vectors in the N-dimensional space of neural responses.
Equation (5.4) minimizes the angle between the true response vector r and the mean response
vector f. This method is particularly useful if there are population wide variations in the
excitability of the neurons being decoded. Since this review covers theoretical applications
of decoding, this type of variability will not be a problem and I will use the simpler least
squares approach discussed next.

A good general method for population decoding is to choose z.¢ so that the mean firing
rates f(z.5) provide the best possible match to the observed rates r. This can be done by
performing a least squares fit of the average rates f(z.s) to the observed rates r

Z — fi(zest)]* = minimum. (5.5)

=1
The functions f(z) represent the average firing responses of the neurons in the array when the
coded quantity takes the value . However, due to noise and neuronal variability there will
be variations around these mean firing rates. Because of this variability, the decoded value
Test will not always be identical to the true value z. On average the two quantities will be
the same, but z.4 will fluctuate around its average due to the variability of the firing rates.
Suppose that these fluctuations are uncorrelated and have zero mean and standard deviation
o,. The variance of the estimate z.5 given by the least-squares method, o2, is then

N _1

2 2 2

i =o; (Z[ﬂ(m)] ) (5.6)
i=1

where the prime denotes differentiation. For the case of Gaussian tuning curves, as in figure

2, this reduces to )
o2 = 20, ooy (5.7)
fprmax
The higher the density of coverage, the lower the decoding error and the dependence of ¢,. on
p indicates that this is a typical square root of N effect. The error depends directly on the
variability of the individual neuronal rates but only on the square root of the tuning curve

width.

6. Decoding Direction

The coding and decoding of direction is an interesting special case of population coding.
In this case the coded quantity is a vector & with multiple components z,, for p =1,2,...,d
when a d-dimensional vector is being coded. The dimension d is typically either 2 or 3. If
only the direction and not the magnitude of # is being coded, it is convenient to make ¥ a
unit vector so that |Z| = 1. The Cartesian components z, of the vector & are the projections
of & onto unit vectors éu that form orthogonal coordinate axes,

2, =7-C,=cos(8),) (6.1)

where 8, is the angle between # and éﬂ. The inverse procedure, reconstruction of a vector
from its components, is accomplished by summing the component values times the appropriate
unit vectors

d
= Zmﬂéﬂ . (6.2)

pn=1
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Vectors are typically represented mathematically as in equation (6.1), by components
projected along orthogonal, Cartesian coordinate axes. Remarkable, many neuronal circuits
construct essentially the same representation (Touretzky et al., 1993; Salinas & Abbott, 1994).
The indication that this is happening is that the tuning curves f(Z) are in the form of cosine
functions just like equation (6.1) so that the firing rates are proportional to the projections of
the coded vector along preferred axes defined by the neurons. Cosine tuning curves are found
in many systems. There are interneurons in the cricket cercal system that code wind direction
at low velocity by firing at rates that are proportional to the Cartesian coordinates of the
wind direction vector (Theunissen & Miller, 1991; Theunissen, 1993). The systems where
the vector method has been applied to monkey arm movements, in motor cortex (Schwartz
et al., 1988), premotor cortex (Caminiti et al., 1991), parietal area 5 (Kalaska et al., 1983)
and cerebellum (Fortier et al., 1989) all exhibit cosine tuning curves. Cosine responses are
also found in neurons coding body (Suzuki ef al., 1985) and head position in cats (Shor et
al., 1984) and head direction in rats (Chen et al., 1990; Taube et al., 1990). Parietal visual
neurons fire at rates proportional to the cosine of the angle of movement direction of a visual
stimulus (Steinmetz et al., 1987). Of course, cosine functions are both positive and negative
while firing rates cannot be negative. In some systems, this means that only half of the cosine
function can be represented by one neuron. For example, in the cercal system of the cricket,
one neuron represents the positive part of the cosine function and a second neuron is used for
the negative part (Theunissen & Miller, 1991; Theunissen, 1993). In other systems like the
monkey motor cortex (Schwartz et al., 1988), there is a background rate of firing. If this is
subtracted out in the definition of the firing rate, then r(¢) can become negative. As a result,
a larger portion or even all of the cosine curve can be represented by a single neuron.

The population vector decoding method (Georgopoulos et al., 1986, 1988 & 1993) is based
on the standard formula for reconstructing a vector from its components, equation (6.2). If
neuron ¢ responds to stimulus & by firing at a rate proportional to & - C:-, the vector method
estimate of 7 is

N
Fest = »_ riC (6.3)
i=1

just like (6.2). It can be shown that for a uniform distribution of preferred direction vectors
é, the direction of s will converge to that of & provided that enough neurons are included
in the sum (Georgopoulos et al., 1988).

There is a complication with neural coding of direction that is not present in the usual
Cartesian system. The number of neurons typically exceeds the number of coordinate axes,
N > d, and the axes C defined by the neurons do not form an orthogonal system. We can
correct for this by using a method similar in spirit to the Bayesian method of decoding but
linear in the firing rates. We express the estimated vector as a linear sum similar to equations

(6.2) and (6.3)

Tost = ZT‘ZEZ (6.4)

except that the basis vectors D are not set equal to the projection vectors C but are determ-

ined by requiring that this linear estimate minimizes the average squared error (Z.q — 7).
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The resulting basis vectors are (Salinas & Abbott, 1994)

N
Di=Y"Q;'L; (6.5)
j=1
with B
;= /dfffj(f) (6.6)
and
Qi = oty + [d7 (@) 1(7) (6.7

The vectors L represent the ‘center of mass’ of the tuning curves. For symmetric tuning curves
they point in the same directions as the preferred direction vectors C. Q is the correlation
matrix of firing rates. This method provides the optimal linear estimate of the coded signal.

7. Network Models

As well as being a powerful experimental tool, decoding is a useful technique for studying
model neural networks because it provides a concise description of population activity that
has direct functional significance. We will consider a model network with the architecture
shown in figure 3. Information about the stimulus value z is carried into the network by a set
of input firing rates. The firing rate of input ¢ when the stimulus takes the value z is g,(z)
and the synaptic coupling from input a to neuron ¢ has strength M;,. As a result of these
inputs, neuron 7 fires at a rate f;(z) in response to the stimulus. The firing of neuron 7 is
also affected by recurrent synapses between network neurons. The strength of the synaptic
connection from neuron j to neuron ¢ is given by the weight W;;.

Using this architecture we can address many issues concerning network function and
plasticity. How do the response tuning curves f(z) arise from the afferent activity g(z)
and the synaptic couplings M between the input lines and the coding neurons? How do
modifications in the strengths of the input synapses affect the response properties of the
network neurons and the ensemble-coded value of the stimulus? What is the role of the
recurrent synapses within the network represented by the matrix W? How do modifications
in the strengths of recurrent synapses affect the response properties of the network neurons
and ensemble-coded value of the stimulus? In the following sections, 1 will discuss general
techniques for addressing these questions and will present some results obtained by applying
them.

Some applications require us to know how the firing rates r of the network neurons depend
on the input firing rates and on the synaptic weights connecting network neurons to their
inputs and to each other. It is simplest to assume a linear formula,

T = Z Miaga(m) + Z W”T'] (71)
@ J

where the first term represents the effect of input firing and the second term recurrent network
connections. | will discuss corrections to this linear approximation in section 12. Equation
(7.1) refers to static or quasi-static rates. The case of dynamically varying rates will be
considered in section 13.
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8. Synaptic Modification and Learning Rules

It is widely believed that modification of synaptic strength is the basic phenomenon un-
derlying learning and memory (Morris et al., 1986; Byrne & Berry, 1989; Gluck & Rumelhart,
1990; Baudry & Davis, 1991; Hawkins et al., 1993). In addition, activity-dependent synaptic
plasticity plays an important role in the development of the nervous system (Shatz, 1990;
Miller, 1990). A large body of experimental evidence supports the notion that neuronal
activity can affect synaptic strength and specific features of both LTP (Bliss & Collingridge,
1993; Malenka & Nicoll, 1993) and L'TD (Artola & Singer; 1993) of synapses have been char-
acterized. In addition, evidence and ideas about the molecular basis for these phenomenon
are accumulating (Lynch et al. 1983; Lisman & Goldring, 1988; Lisman, 1989; Gustafsson &
Wigstrom, 1988; Jahr & Stevens, 1990; Madison et al., 1991). To reveal the functional and
behavioral significance of LTP and L'TD we must understand how experience and training
modify synapses and how the resulting modifications change patterns of neuronal firing and
affect behavior. Work on the first of these two issues has led to a large number of neural net-
work learning rules proposing how activity and training experience change synaptic weights
(Hebb, 1949; Sejnowski, 1977; Bienenstock et al., 1992; reviewed in Abbott, 1990). Proposals
concerning the second of these questions include ideas about associative memory and pattern
recognition (Marr, 1971; Hopfield, 1982 & 1984; Grossberg, 1988; Kohonen, 1984 & 1988;
Rolls, 1989; Amit, 1989; Hertz et al., 1990), storage of statistics (Sejnowski, 1977; Levy et
al., 1990) and storage and recall of paths or sequences of motor actions (Blum & Abbott,
1996; Abbott & Blum, 1996).

The form of synaptic modification that has attracted the most attention for models of
learning and memory is Hebbian L'TP (Hebb, 1949). For potentiation of a synapse to occur
through this mechanism, both the presynaptic and postsynaptic neurons must be depolarized.
This suggests a learning rule in which the strength of a synapse from neuron j to neuron ¢
changes at a rate that is proportional to the product of the firing rates r; and r;,

dWs;
dt

= EWTﬂ‘]' . (81)
Here ey is a parameter that determines the rate of the synaptic change. Similarly, the strength
of a synapse from input a to neuron ¢ will be modified at a rate

dM;,
dt

= €MTida (8.2)

with eps the corresponding rate constant for M. Of course, these equations assume that a
synapse is there to be modified. If no physical synapse exists, the corresponding element W;;
or M;, must be kept at the value zero. In particular, synapses between a neuron and itself,
i = j in equation (8.1), should not be included. In practice, it is common to assume all-to-all
coupling and ignore these constraints. This is a valid approximation for large, highly-coupled
networks.

Equations (8.1) and (8.2) allow the synaptic strengths to grow without bound if the
pre- and postsynaptic firing rates are nonzero for a long period of time. This is clearly
unreasonable so some form of constraint must be imposed to prevent the synaptic weights
from growing too large (Oja, 1982; Linsker, 1988 & 1993; Miller & MacKay, 1994). I will
not discuss these constraints, assuming that synaptic potentiation stops before the constraint
is reached. This requires a mechanism that is capable of turning synaptic potentiation on
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and off (Bortolotto et al., 1994). We can also justify ignoring the constraints by assuming
that the initial pattern of changes in synaptic strengths can be used to characterize the final
outcome of those changes (MacKay & Miller, 1990).

We would like to relate the changes in synaptic strength characterized by the above
equations to the experience of an animal during training or development. We will divide this
problem into two parts. During development, we are interested in the large changes that give
rise to the tuning curves f. During training following development, the changes are apt to
be more subtle and we can consider small deviations from the basic firing rates f that are
induced by the training experience. Because of this, the computation of training induced
changes requires fewer assumptions and we will begin with this case and discuss it further in
section 9.

Equations (8.1) and (8.2) require a knowledge of the firing rates r. If the tuning curves
have been developed previously and if the changes in W and M are not too large, we can use
our knowledge of the tuning curves to predict the firing rates. Thus, we use the approximation
r = f(z) in equations (8.1) and (8.2). Suppose that during the training period the stimulus
is described by @ = X (¢). Then, the firing rates of the network neurons are given by f(X (¢))
so, from (8.1) and (8.2),

Mo — (X ) HExW) (83)
and
P~ FX1)au(X (1) (8:4)

These equation can be integrated to determine the weight changes resulting from the entire
training period (see section 9).

Equations (8.3) and (8.4) ignore a feature of LTP that may have very important con-
sequences. The efficacy of L'TP depends critically on the relative timing between the pre-
and postsynaptic activity (Gustafsson et al., 1987). If these are simultaneous, LTP occurs as
discussed above. However strict simultaneity of activity is not required. Postsynaptic activ-
ity can follow presynaptic activity by 100 to 200 ms and L'TP can still occur. On the other
hand, if postsynaptic activity precedes presynaptic activity, LTP does not occur. Instead,
LTD may result from this sequence of stimulation (Debanne et al., 1994). If we let H ()
represent the relative efficacy of LTP when postsynaptic activity follows presynaptic activity
by a time ¢, the rate of change in synaptic strengths is given by

T = [l B 5O+ ) (X0 (8.5)
and M.
= /dt’H(t’)fi(X(tJr ') ga(X (2)) (8.6)

which replace equations (8.3) and (8.4). The temporal asymmetry of H has a dramatic effect
on the synaptic weight changes produced by training because it causes them to depend on
the temporal order of the activity generated during training. This allows synaptic weights
to store information about temporal sequences and has been proposed as a mechanism for
learning paths and sequential motor actions (Blum & Abbott, 1996; Abbott & Blum, 1996).
However, in the cases considered here, temporal ordering will not play an important role and
equations (8.3) and (8.4) will lead to the same results as equations (8.5) and (8.6).
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In studying development of tuning curves, we cannot rely on the approximation r = f(z)
used above because this assumes that the functions f are already well established. Instead,
we will use the linear approximation for the firing rates of equation (7.1). To simplify the
discussion of tuning curve development | will ignore the effect of recurrent synapses by setting
W = 0. The basic synaptic modification rule is obtained by substituting the firing rates given
by (7.1) with W = 0 into (8.2),

d](\ftm =¢ep Zga (X () gs(X ()M . (8.7)
b

Here X (t) is the set of stimulus values presented during the development period. This
equation for the development of tuning curves will be analyzed in section 10.

9. The Effects of Synaptic Modification on Coding

The responses of neurons in a population coding the variable z are characterized by the set
of firing rate tuning curves f(z). These tuning curves are shaped by both input connections
and recurrent synapses between network neurons. Recurrent synaptic connections between
network neurons cause the firing rates of the neurons to depend on each other as well as on
the input firing rates. The effect of the firing rates on each other is considered in section
11. Here we analyze the effect of changes in the strengths of synapses. Suppose that we
have mapped out the average firing responses f and then some modifications occur due to
experience and learning that change the synaptic weights by amounts AW and AM. These
changes can be computed by integrating equations (8.3) and (8.4) (or 8.5 and 8.6) over time.
If they are small, we can Taylor expand and write

i = @)+ 0 AMiaga(o) + 3 AWy o) (01)

This result is valid to first order in the synaptic changes assuming that the corresponding
dependence on the firing rates is linear as in equation (7.1). Equation (9.1) is a useful result
because it allows us to compute the effect of the training experience on the response properties
of neurons.

Suppose that after the changes represented by AM and AW we decode using the original
response functions f as in section 5. The result we will get is no longer z.5; = @ as it was
before because of the shift in neuronal responses implied by the second term on the right side
of equation (9.1). Instead

i F(2) [S0 AMiaga(z) + 55 AW £ ()]
i [ (@) '

This result is obtained by minimizing the squared difference (5.5) with respect to z.s using
equation (9.1) for the firing rates r and computing to lowest order in the weight changes.
Equation (9.2) allows us to evaluate the effect of synaptic modifications on the value of a
coded quantity. This effect is a shift, given by the second term on the right side of equation
(9.2), in the coded value away from the stimulus value.

To decode the firing rates given by (9.1) and derive the result (9.2), we used the original
tuning curves f to match with the actual firing rates r despite the fact that these are now

9.2)

Test = T+
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given by (9.1) not by r = f. This assumes that downstream neural networks have not
themselves been changed by the training experience that induced the changes of synaptic
weights represented by AM and AW. If| at a later time, these networks are modified so that
the appropriate tuning curves to use in decoding are those given by equation (9.1) rather than
by the original f(z), the shift in equation (9.2) will be eliminated and we will find z.5 = 2
once again. This is an effective way of erasing the effects of learning without having to reset
the synaptic weights that were modified during the training process.

The results of this and the previous section give us enough information to predict how
exposure to a stimulus during a training period will affect synaptic strengths, how changes
in synaptic strengths modify patterns of firing and how the modified firing patterns affect the
value of a quantity encoded by the neural ensemble. After a training period during which the
stimulus takes a sequence of values X (), if we subsequently expose the animal to a stimulus
z, neuron ¢ will fire at a rate given by equation (9.1) with AW and AM determined by
integrating equations (8.3) and (8.4) (or 8.5 and 8.6). On the basis of these equations, we
can determine how network firing and the value of 2.4 obtained from that firing are affected
by exposure to a time-dependent stimulus X (¢) during training. This relates the value of a
coded quantity that is of behavioral relevance to the stimulus experience of the animal during
training and allows a direct computation of the effects of training on coding. The results
of some such calculations are given below and in figures 4 and 5 (see also Abbott & Blum,
1996).

In the examples given here, | will only consider the effects of changes of recurrent synapses
between network neurons and will set AM = 0. The first case considered is an X (¢) that
varies randomly but uniformly over the entire z range. This corresponds to exposing the
animal to a random sequence of stimuli during the training period. Using the results given
at the end of section 4, we find that such exposure changes the recurrent synaptic strengths
by an amount

AWy = gw/mrkaopexp (= (v — y)?/40%) (9.3)

where gy is a constant related to ey and the duration of the training period. The resulting
effect of this sort of training on the neuronal response tuning curves is determined by inserting
this expression into equation (9.1) and again using the results at the end of section 4. We
find that after this random training

QWQWprgmaxU;z‘

ri = fi(z) + — 5 exp (—(r — yi)2/6(7)2c) . (9.4)

The second term is a wider Gaussian curve than the original tuning curve f;(z). Thus,
exposure to random stimuli during training tends to broaden the tuning curves. This has
no effect on the value of the coded quantity because the tuning curves are not shifted or
asymmetrically distorted. As a result, decoding equation (9.4) produces the result z.s = z.

We now consider a case where the value of the coded quantity is changed by the experience
during training. Here the training period consists of exposure to a single stimulus value
X (t) = 0. Such training changes the recurrent synapses by

AWy = g, exp (—(v2 + y2) /203) (9.5)

The constant gy defined here is somewhat different than the one appearing in (9.3) but again
depends on the rate of synaptic change and on the length of the training period. The rate of
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firing in response to an input z after this training, computed with the same techniques used
for equation (9.4), is

ri = fi(2) + gwArhaspo g exp (= (2 + 247) /40%) (9.6)

This causes an increase in the strength of the response for tuning curves centered at = 0
and also an asymmetric distortion of the tuning curves near this point. The impact of these
changes on the decoded value z.s as a function of the true stimulus value, computed using
equation (9.2), is

Tegt = (1 — gw\/TPrE, 0 exp (—xZ/QU?)) . (9.7)

This is plotted in figure 4. Far from z = 0, the coded and actual stimulus values agree.
However, stimuli near zero, produce a coded value that is different from the stimulus value.
After exposure to the stimulus, the output of the network does not merely represent the
stimulus but rather a combination of its value and the training value.

What is the significance of the shift that causes z.4 to differ from z in the region around
the training point z = 0, as see in figure 47 Information about the stimuli experienced
during training affects the perception of new stimuli. The network interprets inputs near
z = 0 as if they were located nearer to x = 0 than they actually are. This relates to ideas
about pattern completion and associative memory in neural networks (Hopfield, 1982 & 1984;
Grossberg, 1988; Kohonen, 1984 & 1988; Amit, 1989; Hertz et al., 1990). The point 2 =0
can be recovered from initial points near zero if we feed the value z.5 coded by the output
of the network back so that it acts as a new input z value. The result of iterating this
feedback loop is shown in figure 5. lteration leads to a coded output value of z.5 = 0 for
any initial input z near zero. Feedback of the network coded output to its input could be
achieved internally at the network level, or it could arise if the response of an animal to the
coded output leads to a new stimulus value equal to the coded value. In network associative
memories, only the final fixed-point value, 2 = 0 in this example, is given any functional
significance. However, at every value of z the deviation between the coded value and the true
value contains information. This difference identifies the direction toward the training point
z = 0 from any nearby z position.

Recently, it has been shown that networks of this type can store and recall informa-
tion about paths or sequences of motor actions (Blum & Abbott, 1996; Abbott & Blum,
1996). Suppose, for example, that the input signal z corresponds to sensory information
about the position of a limb. Initially, network activity codes for a value z.4 identical to the
true position z. Now suppose that, during a training session, the motion X (¢) is repeated
while synaptic potentiation takes place. Temporal inputs like this lead to an asymmetric,
sequence-dependent potentiation of synapses between coding neurons through the L'T'P pro-
cesses described by equation (8.5). After this potentiation, the result of decoding network
activity, s, is shifted away from the input value z by an amount given by equation (9.2).
This shift causes the coded value z.s to lead the true value x and thus, to provided in-
formation about where the limb should go in order to execute the learned motion X (¢). If
the coded value is fed to motor networks controlling limb motion, the learned sequence will
automatically be recalled and generated.

This idea has also been applied to the recall of paths through a spatial environment
by the hippocampus (Blum & Abbott, 1996). In the hippocampus of the rat, place cells
collectively code information about the spatial position of the animal (O’Keefe & Dostovsky,
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1971; O’Keefe & Nadel, 1978; O’Keefe, 1979; Wilson & McNaughton, 1993). If LTP occurs
while the rat travels down a particular path, a path-dependent pattern of synaptic potentiation
will be established. This LTP has been shown to shift the location coded by place cell
ensemble activity away from the location of the rat in a direction toward and along the
learned path. Thus, the position of the coded point can be used to guide navigation down
the previously learned path.

10. Development of Tuning Curves

In the previous section, we studied how existing tuning curves are modified by synaptic
changes and the impact that this has on coded quantities. Now we will consider how larger
synaptic modifications can lead to the development of tuning curves. This issue has been
analyzed in great depth in studies of the development of ocular dominance and directional
selectivity in the primary visual cortex (Malsburg, 1971 & 1979; Swindale, 1980; Linsker,
1986; Miller, 1990, 1992 & 1994; Bienenstock et al., 1992). 1 will discuss a simpler, generic
example to illustrate the general mechanism.

We will examine development without recurrent collateral input so that W = 0. The
tuning curves in this case are just the firing rates given by equation (7.1) with W = 0,

ri = fi(z) = ZMmga(m) . (10.1)

If the rate parameter eps controlling the speed of synaptic changes is small so that the synaptic

changes are much slower than changes in the stimulus value, we can average over the stimulus
history and rewrite (8.7) as

dM;

dt

=em Y <gags> My . (10.2)
b

Here the brackets < > signify time averaging. The quantity < g,g, > is the correlation
matrix of input firing rates. Since this matrix has positive eigenvalues, the synaptic weights
M will grow exponentially. The combination of synaptic weights that grows most rapidly
will ultimately dominate so we can approximate the final weights by considering only this
mode of equation (10.2) (Hertz et al., 1990; MacKay & Miller, 1990). This means that
ultimately M will be proportional to the eigenvector of the matrix < g,g; > with the maximum
eigenvalue. This result has several interesting interpretations. First, it means that the weights
automatically select the combination of inputs with the maximum input correlation (or input
variance if the mean of the input signal is zero). The resulting firing rate is proportional to
the maximal principal component of the input data set (Oja, 1982; Hertz et al., 1990). If
certain conditions apply, it can be shown that this assures that the neuronal response carries
the maximum amount of information about the input signal (Linsker, 1988 & 1993). It is
remarkable that such a simple developmental rule leads to an optimal neuronal response.

Figure 6 shows the development of a neuronal response tuning curve for a single neuron
on the basis of equation (10.2). The inputs g in this case, are a set of Gaussian firing rate
curves like those shown in figure 2 and given by equation (4.1). Initially all the input weights
M were set equal to each other and the resulting firing rate as a function of z, given by
equation (10.1), is flat except at the edges (figure 6a). During development the stimulus
consisted of the single value X (t) = 0 so that

< Gagp>= rhamexp (—(v2 +3)/20%) . (10.3)
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This leads to the development of a Gaussian firing response curve centered about the point
z = 0 (figures 6b and 6¢). In this case, the final tuning curve has the property that the neuron
responds optimally to the value of the stimulus seen during development.

11. Effects of Recurrent Synapses on Firing Rates

In the last section, we saw that neuronal responses tuned to a specific stimulus value
could be established using only the input synaptic weights and ignoring recurrent synapses
between network neurons. In section 9, we noted the effect of training-induced changes in the
strengths of recurrent synapses, but did not consider the impact of the recurrents themselves.
What then is the role of recurrent network synapses in tuning and refining the neuronal and
network responses to inputs? Suppose that the input synaptic weights have developed to
produce tuning curves given by equation (10.1). When we add recurrent synapses, the firing
rates of network neurons depend on each other as well as on the stimulus value,

N

r; = fz(x) + Z WijT‘]‘ . (111)

i=1

To determine the neuronal responses in the presence of recurrent synapses, we solve this
equation for the firing rates,

N

ri= Y (8= Wi) T i) (11.2)

i=1

We assume that W can be diagonalized and define a complete set of eigenvectors £ and
eigenvalues A, labeled by the index n and satisfying

N
> WiEE = ALl (11.3)

i=1

In terms of these, we can write

fi(@) = 3 An(@)El (11.4)
and the solution for the firing rates becomes

5 An(@)EF
ry = Xn:ﬁ (11.5)

Equation (11.5) displays the interesting phenomenon of resonance. Suppose that one or
more of the eigenvalues is near, but slightly less than, one. Any stimulus that causes the value
of A, (z) corresponding to one of these eigenvalues to be appreciably greater than zero will
elicit a very strong firing response. The firing response is amplified by the factor 1 — A, in
the denominator of (11.5) for eigenvalues near one. This strong response will be proportional
to £". The network is exhibiting pattern (or in this simple case, value) recognition. Special
values of the stimulus, those that excite modes with eigenvalues near one, elicit extremely
strong responses from the system. In addition, there will be a strong bias of the coded value
of a stimulus toward values corresponding to eigenvectors of W with eigenvalues near one.
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If any of the eigenvalues is larger than one, the resonance phenomenon is even more
dramatic. In this case, if we do not have inhibition or some mechanism to limit the firing
rates, a dynamic model (section 13) shows that the network becomes unstable and the firing
rates diverge. However, if these limiting mechanisms are incorporated into the model a strong
resonance phenomenon is observed. This is shown in section 13 where the implications of
resonant responses are also discussed.

12. Network Models - Nonlinear Effects

Many of the results discussed in previous sections have been based on an assumption
about how the firing rate of an individual neuron depends on the firing rates of other neurons
that synapse onto it. We have assumed in equation (7.1) that this dependence is linear,
but this assumption should be compared with experimental results and corrected if it is
not accurate. Unfortunately, this is not something that is easily done. In neurophysiology
experiments, the firing rate is usually measured as a function of the amount of current injected
through a microelectrode into the soma of a recorded neuron (Gustafsson & Wigstrom,
1981; Lanthorn et al., 1984). However, in a natural setting neurons receive current from
synapses not through electrodes. There are three parts to the computation that determines
how neuronal firing rates depend on each other. First, we need to know how the firing rate of a
neuron depends on the amount of current injected into its soma. Second, we must determine
how presynaptic firing changes the conductance at the postsynaptic terminal leading to a
synaptic current in the postsynaptic neuron. Finally, we must relate the amount of current
entering the soma to these synaptically induced conductance changes.

There is evidence that in some circuits and situations neurons may operatein a fairly linear
range (Jagadeesh et al., 1993). However, there are many potential sources of nonlinearities
along the pathway from presynaptic to postsynaptic firing. The firing rates of neurons do
not have a strictly linear dependence on the amount of current injected into their somata.
Below a threshold current, no firing occurs. At the threshold, the firing rate may suddenly
jump to a nonzero value or it may rise continuously from zero (Rinzel & Ermentrout, 1989).
Bifurcation theory indicates that in the latter case for a wide class of models, the firing rate
should depend on the square root of the difference between the injected current and the
threshold current near the transition to firing (Rinzel & Ermentrout, 1989). At the high
current end, firing rates do not rise indefinitely but saturate because of the effects of the
refractory period. Under constant current injection, the firing rate may not remain steady
but may fall due to spike-rate adaptation. Even the simplest of model neurons, the integrate-
and-fire model, has a firing rate that is a nonlinear (logarithmic) function of injected current
(see for example Tuckwell, 1988).

Presynaptic firing results in the release of transmitter from the presynaptic neuron and
this induces a change in the membrane conductance of the postsynaptic neuron at the site
of the synapse. The amount of current per unit area that enters a neuron due to a synaptic
conductance can be written as

Isyn = gsynm (Esyn - ‘/) (121)

where F,,, is the synaptic reversal potential. Because this current depends on the presynaptic
voltage V, it produces potential nonlinear effects that are discussed below. The postsynaptic
conductance per unit area has been written in the form g,,,,m where 7, is a constant and
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m is a dynamic variable in the range 0 < m < 1. The variable m is the probability that a
synaptic receptor channel is in an open, conducting state.

The first step in analyzing the dependence of the synaptic conductance on the presynaptic
firing rate is to determine how the amount of transmitter released from the presynaptic
terminal depends on this rate. For simplicity, we might take this dependence to be linear,
but it need not be. Suppose that the transmitter interacts with the receptor through a simple
binding reaction

closed receptor + n transmitter molecules = open receptor (12.2)

with forward rate constant k; and the backward rate constant £_;. In terms of the open
probability for the receptor m, these reactions imply that
dm n
dt
with 7’ the transmitter concentration. The steady-state open probability given by this equa-
tion is
kT
k_y 4+ kyTm "

This is only linear in T if n = 1 and T is small.
Synaptic conductances induce currents over the surface of large, elaborate dendritic trees.

(12.4)

M= My, =

The total current /4,,, feeding into the soma from the trunk of the dendritic tree, shown
in figure 7a, is the analog of the current injected through an electrode in an experimental
setting. Currents entering through dendritic synapses must travel down dendritic cables
before reaching the soma. They are thus subject to losses from the longitudinal resistance
of the dendritic cable and due to leakage through the dendritic membrane. Since synaptic
conductances along the dendritic cable can affect the amount of membrane leakage, there is a
potential nonlinear impact on the amount of current entering the soma (Rall, 1964; Koch et
al., 1983; Segev & Parnas, 1989; Abbott, 1991b; Bernander et al., 1991; Rapp et al., 1992).

I will assume that the neuron being modeled has a passive dendritic tree. This is not a
particularly valid assumption but it provides at least a lower limit on the nonlinear effects to
be expected. Active dendritic trees can introduce additional sources of nonlinearity. In the
passive case, the current [,,,,, entering the soma from the dendritic tree can be computed
using methods of cable theory (Jack et al., 1974; Rall, 1977; Tuckwell, 1988; Butz & Cowan,
1974; Koch & Poggio, 1985; Abbott, 1992). In the examples given here, I will compute
the current which flows out of the trunk of a dendritic tree into the soma when synapses
along the dendrite introduce a conductance change per unit area given by g,,,m and a
synaptic current density /,y,,. This computation is greatly simplified if we make use of a
very convenient simplification due to Rall (1962 & 1977). The idea is to replace a complete
dendritic tree with a single cylindrical cable having the same total electrotonic length as the
original tree and the same total surface area. This simplification is shown in figures 7b and
Tc.

I will give results for the total dendritic current entering the soma, Imq, for an equivalent
cable of radius ¢ and length I with two different synaptic placements. First, suppose that
the synapses are uniformly spread along the entire dendritic cable as in figure 7b. In this
case (Abbott, 1991b),

Lsoma = 2waX(m) gy, tanh(L/X(m)) (12.5)
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with

A(m) = aRyr
~ V 2RL(1+ 7,y mRu)

where 1/Ras is the conductance per unit area of the membrane and Ry, is the longitudinal
resistivity of the intracellular fluid. For a short cable and small synaptic conductance, this

(12.6)

formula is in fact linear in the synaptic current,
Lsoma = 2mwaLlsy, . (12.7)

This is just the area of the cable times the synaptic current density. However, if the cable
length is longer and the synaptic conductance is larger, the somatic current given by (12.5)
grows only like the square root of the synaptic conductance.

The nonlinear dependence of I,,,, on the firing rates is more dramatic if the synaptic
input is located at the end of the equivalent cable, as in figure 7c. In this case (Abbott,
1991b),

Ta’ Tsyn

Tsoma = — .
cosh(L/Xo) + GgynmBRrAosinh(L/Ao)

aRar
Ao =1/ . 12.9
0 2R, ( )

N FQQISyn
T 147G, .mRLL’

(12.8)

with

For a short cable, this becomes

(12.10)

[soma

Both (12.8) and (12.10) are linear in Iy, for small synaptic conductances but approach finite
limiting values for large synaptic conductances.

In summary there are many possible sources of nonlinearity in the relation between pre-
and postsynaptic firing rates. Transmitter release can be a nonlinear function of presynaptic
firing rate, synaptic conductance a nonlinear function of transmitter concentration, somatic
current a nonlinear function of synaptic conductance and postsynaptic firing rate a nonlinear
function of somatic current. Perhaps, with luck, all of these combine to produce a fairly
linear dependence and, of course, over a small enough range most nonlinear functions can be
approximated by linear expressions. Nevertheless, there are situations in which nonlinearities
may be important, as seen in the next section.

13. Network Dynamics

Perhaps the single feature of biological neural systems most responsible for making them
difficult to model is the tremendous range of time scales for their dynamics (Churchland &
Sejnowski, 1992). The fastest currents in a typical neuron, those responsible for initiating
the action potential, turn on in less than a millisecond. The slowest currents and some
synaptic currents have time constants of hundreds of milliseconds or more. Cultured neurons
have shown activity-dependent changes over periods of about one hour (Turrigiano et al.,
1994). Thus, the dynamic range that must be modeled extends over three to seven orders of
magnitude. The most drastic of the many approximations made to produce idealized neural
network models is the collapsing of this huge range to a single time scale. This approximation
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has been made rigorous in cases where synaptic couplings are much slower than any other
time constants affecting neuronal dynamics (Ermentrout, 1994). I will take another approach
here and assume that the time scale used in the kernel of equation (3.1) to define the spike
rate variable r(t) is significantly longer than any time scale affecting neuronal or network
dynamics.

If the time scale of the kernel K is slower than all other intrinsic and synaptic time
scales, the problems associated with the complexity of neuronal dynamics disappear. We
will consider at first a single neuron responding to a stimulus. Suppose that the stimulus
is described by a slowly varying function z(t) and the average, quasi-steady-state firing rate
response to this stimulus is f(z(t)). If the neuronal dynamics is faster than the time scale for
the kernel, the actual firing rate will settle down to something close to its steady-state value
in a time shorter than this scale. In addition, for a slow kernel, many spike will be integrated
before the kernel changes appreciably. As a result, we can replace the actual spike response
function s(¢) in equation (3.1) by the average firing rate at a particular value of z(t) and
write

r(t) = /Ooodt’ K() f(e(t =) . (13.1)

This relates the dynamics of the firing rate variable r(¢) directly to the stimulus dynamics
z(t) through the steady-state response function. By using a slowly varying kernel to define
the firing rate, we can avoid the complications of neuronal and network dynamics and build
a dynamic model purely on the basis of steady-state properties.
If we take the exponential kernel of equation (3.11), r(t) can also be express in the form
of a differential equation
PO )+ 5 ). (1.2
Equation (13.2) has been discussed and derived many times (Wilson & Cowan, 1972 &
1973; Hopfield, 1984; Frolov & Medvedev, 1986; Abbott, 1991a; Amit & Tsodyks, 1991a &
1991b; Ermentrout, 1994). It should be stress that, according to the viewpoint presented
here, the time constant 7 appearing in equation (13.2) is not directly related to any time
constant characterizing the neuron, the membrane time constant in particular. Rather it is a

parameter related to properties of the neuronal spike train and its characterization in terms
of an integrated variable.

Differential equations can be written corresponding to the kernels (3.12) and (3.13) as
well. For example, if we use the kernel (3.12) instead of the exponential kernel, r(t) is given
by a pair of differential equations,

dr(t) _
T —r(t) + a(t) (13.3)
and da()
T —a(t) + f(z(t)) . (13.4)

For the double exponential kernel, the firing rate is described by

a(t) - b(?)

r(t) = p— (13.5)
where da()
7~ —a(t) + s @) (13.6)
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and ab(1)

t

T = —b(t) + o f (z(t)) . (13.7)

The effects of recurrent synapses between network neurons can also be included in this

type of firing-rate model. For example, if we use equation (11.1) to describe how network

firing rates depend on each other and we use the exponential kernel, firing rates in the network
will be obey the equations

dT}j (t)
dt

— i) + Si(@) + 30 Wiy (1) (13.8)

i=1

T

Nonlinear effects like those discussed in the last section can be incorporated by using more
complex expressions for the last term in this equation (Abbott, 1991a & 1991b).

A dynamic model of the neuronal response allows us to study, among other things, the
resonance phenomenon discussed in section 11. There it was pointed out that if there are
eigenvalues of the synaptic weight matrix greater than one, the linear network is unstable
to uncontrolled growth of the firing rates. This can be seen by performing a linear stability
analysis of equation (13.8). Various ways of controlling this explosive, unstable rise in firing
have been proposed. The basic mechanism is inhibition and involves either a nonlinear firing
rate for inhibitory neurons (Buhmann, 1989), nonlinear effects of fast inhibition (Abbott,
1991a) or the relative timing of excitatory and inhibitory responses (Douglas et al., 1989;
Douglas & Martin, 1991). In the model shown in figures 8 and 9, the unbounded growth
of firing rates in the linear networks during a resonance is controlled by nonlinear effects of
inhibition computed as in the last section (Abbott, 1991a & 1991b).

The typical response of a population of cortical or hippocampal neurons to stimulation is
induced firing followed by two kinds of inhibition (Avoli, 1986; Connors et al., 1988). The two
inhibitory responses are a fast component that can terminate the firing followed by a slower,
long-lasting hyperpolarization. These are the result of the neurotransmitter GABA activating
two types of receptors labeled A and B respectively. The fast inhibition is essential for the
normal operation of excitatory neurons, if it is blocked these tend to fire in epileptic bursts
(Dichter & Ayala, 1987; Miles & Wong, 1987). The existence of two forms of inhibition and
the time scales associated with them suggest that, if resonances actually occur, they might
be controlled by GABA 4 inhibition and terminated by GABA g inhibition.

Figure 8a shows the non-resonant response of network neurons in a model that includes
excitatory synapses and both slow and fast inhibition (see Abbott, 1991a for details of the
model). The stimulation induces firing of the principal neurons of the network and this in
turn causes a rise in both the fast and slow inhibition. In this case, the stimulus does not
produce a strong response and, in particular, the response does not outlast the duration of
the stimulus. Figure 8b shows a resonant response achieved by increasing the strength of
excitatory synapses until they cause an instability in the network firing following stimulation.
This instability can be seen in the rapid rise of the firing rate following stimulation. The
response is stabilized by the rapid activation of fast GABA 4 inhibition that stops the expo-
nential rise of the firing rate. Firing is temporarily self-sustaining but ultimately the slower
GABApg inhibition terminates the firing. The result is a much stronger response that lasts
significantly longer than the stimulus.

Figure 9 shows how the resonance effect can be used to achieve pattern recognition.
In this figure, a model network was exposed to random patterns of neuronal stimulation
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lasting for 10 ms and occurring every 100 ms. These produced the modest patterns of firing
shown. However, at 500 ms a special pattern of stimulation was introduced, one that led
to the activation of strong excitatory coupling between network neurons and resulted in a
resonance. This is seen in the greatly enhanced activity corresponding to this pattern of
stimulation. Interpreted using the concept of decoding, the resonance phenomenon means
that stimulus values close to values experienced during a training period will elicit a much
stronger response from the network than values that have not been previously experienced.
The resonance phenomenon is an amplification process caused by the recurrent collaterals as
discussed in section 11 and, in the model shown, it is controlled by some of the nonlinear
process reviewed in section 12.

14. Conclusions

The possibility of decoding spike trains from single neurons as well as firing from an
entire ensemble of neurons has important implications for both experiments and theoretical
studies. One the theoretical side, it allows us to interpret the results of our models in a way
that has both behavioral and experimental significance. Instead of reporting the results of
modeling studied in terms of abstract patterns of neural firing, we can provided the values
of coded stimuli or motor outputs.

Our knowledge of synaptic plasticity is growing continually and these results, when trans-
lated into synaptic weight learning rules, provide us with the possibility of avoiding the di-
lemma caused by our ignorance of synaptic strengths in real neuronal circuits. In some cases,
detailed knowledge of how a neural network is affected by training experience coupled with
information about the initial state of the system before training (provided for example by
neuronal tuning curves) may be sufficient to allow us to predict and analyze how training
changes behavior.

Although most neural network models are extremely simplified, this is not an essential
feature of such modeling. Nonlinear and dynamic effects can be included in these models
if they are needed to account for a particular phenomenon being studied. An example of
this is the nonlinear resonance effect that may be related to recognition of previously learned
stimuli. However, it should be emphasized that simplicity is one of the great virtues of these
network models since it allows phenomena to be studied in enough detail to provide new
insights. People eager for more complexity can always study the biological system itself.

I am extremely grateful to my collaborators Emilio Salinas, Kenneth Blum, Kamal Sen and
Carl van Vreeswijk who helped develop many of these ideas. Research supported by NSF
grant DMS-9208206.
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Fig. 1: Spike decoding of a stimulus by a linear filter. The stimulus, shown by the solid
lines in a) and c), is quasiperiodic. Spike trains were generated by an integrate-and-fire
model neuron with the stimulus acting as an input current. These were decoded by a linear
filter to estimate the stimulus. The estimate is indicated by the dashed lines in figures a)
and c). The spike train is also shown in ¢). In a) the random kernel plotted in b) is used
and the estimate does not match the signal. The good match between the estimate and the
stimulus value seen in c) is produced by the kernel shown in d) that resulted from repeated
application of the modification rule discussed in section 3.



Fig. 2: An array of Gaussian tuning curves. Tuning curves are all identical in shape and are
overlapping. The tuning curve centered at x = 0 is darkened for clarity.
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Fig. 3: The network model. Neurons, label by the index i and shown as stippled circles,
respond to a stimulus value z by firing at a rate f;(z). Information about  is carried into the
network from inputs shown as small striped circles through synapses depicted by arrow heads.
Firing rates along the input lines, label by the index a, are given by g,(z). The strength of
the synapse from input ¢ to neuron 7 is M,;. Synapses between network neurons are de-
noted by filled circles. The strength of the synapse from neuron j to neuron 7 is given by W;;.



Fig. 4: Effect of training with a single stimulus value on the coded variable. The coded value
Zegt 18 plotted as a function of the true stimulus value z. The training period consisted of
exposure to the stimulus X = 0. This results in the distortion of the coded value near z = 0
seen in a) and magnified in b).
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Fig. 5: lteration of the trained network. It the coded value z.4 is fed back so that it becomes
a new stimulus value, this results in a steady progression from the initial stimulus value zg
to a final coded value z.4, = 0 which is equal to the training stimulus.



Fig. 6: Development of a Gaussian tuning curve. Correlation-based synaptic modification
of input synapses during a developmental period when the stimulus value was zero results
in the appearance of a Gaussian tuning curve centered at this point. a) The initial tuning
curve is flat, except near the edges. b) The Gaussian curve begins to appear. c¢) The final
(Gaussian tuning curve. In all three plots, the firing rates are divided by the maximum rates
for each case. In absolute terms, the tuning curve in c) represents a much larger firing rate
that the curve shown in a).
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Fig. 7: The model neuron and synaptic placements considered in section 12. a) A soma and
typical passive dendritic tree. The current /4., being computed is the current flowing from
the dendritic tree into the soma. b) and c) show the soma with a single passive dendritic
cable equivalent to the full tree in a). For b) synapses are uniformly distributed over the
equivalent cable while in ¢) synapses are located at the end of the cable.

Fig. 8: Resonance in a firing-rate model with two forms of inhibition. For network (excitat-
ory) neurons, both spikes and a firing rate are plotted. The levels of fast and slow inhibition
as a function of time are also indicated. A brief 10 ms stimulation current excites the system
initially. a) Stimulation results in a transient, weak firing response with modest increases in
inhibition. b) Stronger excitatory couplings between network neurons cause the firing rate to
climb sharply but fast inhibition controls this rate resulting in sustained firing. Ultimately,
slow inhibition increases to the point where it terminates the firing. This is a typical reson-
ance response to a stimulus. (Not available on Web.)

Fig. 9: A network resonance and pattern recognition. Excitatory couplings between network
neurons were chosen so that one particular pattern of activity resulted in particularly strong
network excitation. Each trace represents the firing of one unit and tick marks indicate action
potentials. Kvery 100 ms a brief current is injected into a random collection of neurons. This
elicits a small number of spikes from the stimulated neurons. However, at time 500 ms the
specific pattern leading to strong excitatory network coupling is stimulated. As a result, the
system responds with a firing resonance. (Not available on Web.)



