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Fig. 7. Pmo and Qmo of a rabbit when the backward wave returns in late

systole (indicated by arrow). Pro and Qmo have similar waveshapes before
the appearance of the backward wave.

summation of odd order reflected waves before they are completely
damped, while the forward wave is the summation of the incident
wave and even order reflected waves. It is also worth mentioning
that most of the net flow (Q.mo) occurred in systole and early
diastole, while during late diastole the forward wave almost equaled
the backward wave, and Qo decreased to near zero, although there
was still a non-zero Pn,o (Fig. 3). Physiologically, when the heart
contracts periodically, the slow decay of P,¢ maintains the blood
pressure in the arterial system even though the blood flow can be
very low during diastole.

The assumption of linearity in this study was confirmed by the
observation that in some rabbits, when the reflected wave returned
to the measured site very late, the difference between the systolic
waveforms of Pno and Qmo was small (Fig. 7). The assumption
of time-invariance was supported by the fact that the pressure and
flow waveforms of the beat preceding the asystole did not change
if the R-R interval was constant (Fig. 1). So that, according to our
definitions, it is appropriate to calculate Zo and RI from the initial
Pmo, Qmo, Pf() and Pb().

In this study, we have proposed a new method to analyze the
mechanical characteristics of the carotid artery. This analytic method
may be applied to other arterial subsystems, or to the entire arterial
system. The method yields more accurate derivations of forward and
backward waves, and will be useful in further understanding the
mechanical properties of the arterial system and ventricular/arterial
interaction.
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Optimal Detection, Classification, and Superposition
Resolution in Neural Waveform Recordings

Isaac N. Bankman, Kenneth O. Johnson, and Wolfger Schneider

Abstract— The effects of noise autocorrelation on neural waveform
recognition (detection, classification, and superposition resolution) are
investigated in this study using microelectrode recordings from the cortex
of a monkey. Optimal waveform recognition is acc lished by
the data through a whitening filter before matched ﬁltermg for detection
or template matching for classification and superposition resolution.
Template matching without whitening requires about 40% higher signal-
to-noise ratio than template matching with whitening for comparable
classification and superposition resolution. The comparable difference for
detection is 15%.

I. INTRODUCTION

Reliable recordings of the concurrent activity of multiple neu-
rons have become essential for the study of neural systems. Such
recordings are obtained with multiple extracellular electrodes, each
providing waveforms from one or more neurons. The study presented
here is part of an effort to develop a completely automated, optimal
system for the recognition of action potential waveforms recorded
with high impedance microelectrodes in the mammalian central
nervous system. The system is based on template matching using
the Euclidean distance and an automatically determined acceptance
threshold. The aim of this study is to determine the effect of noise
autocorrelation on template matching and to present an optimal
approach for recognition of action potential waveforms in colored
noise. The contributions of this approach are reported for detect-
ing and classifying individual waveforms as well as for resolving
superpositions of two waveforms.

The most widely used technique for detecting action potentials is
amplitude threshold crossing. Methods such as principal components
[2], and Haar transform [15] have also been used. For optimal signal
detection, waveforms should be subject to Bayesian discrimination
that separates them from background noise.

Classification methods, ranging from amplitude discrimination to
principal components and minimum mean-square-error, have been
suggested in the last three decades [1]-[20]. In a comprehensive
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comparison of separation methods, Wheeler and Heetderks in 1982
evaluated the performance of nine different methods, including spike
amplitude, conduction latency, principal components, and template
matching using Euclidean distance [7]; the last two methods were
found to be the best for spike sorting in noisy data. Because template
matching paired with data whitening yields optimal performance
and because current technology allows its online implementation,
we focused on neural spike sorting by template matching. Optimal
and suboptimal (without whitening) template matching methods are
compared using action potential waveforms and neural noise recorded
from the cortex of an alert monkey.

The simultaneous occurrence of action potentials of two or more
neurons causes the waveforms of the individual neurons to be
superimposed in extracellular recordings. The probability of three
or more action potentials occurring simultaneously is negligibly
low in most recordings. However, two action potentials may be
superimposed with considerable frequency depending on the number
of neurons in the recording, their firing rates, the duration of the action
potentials, and the timing relations between the action potentials
[1], [11]. Failure to recognize the overlapping spikes can cause
underestimation of the firing rates. Solutions for the superposition
resolution problem have been suggested using template matching with
the Euclidean distance [1] and the city block distance [19] as well as
maximum likelihood methods [18]. In this study, we evaluate the gain
in superposition resolution performance associated with whitening,
which together with template matching is theoretically optimal.

II. METHODS

A. Data

Recordings were obtained from the somatosensory cortex of an
alert monkey with a filter pass-band of 10 Hz to 10 KHz, a 12-bit A/D
converter and a sampling rate of 32 kHz. The standard deviation of
amplitude quantization noise was less than 1 V. The electrodes were
quartz glass fibers with tungsten-platinum alloy cores and 3—4 MQ
impedance at 1 kHz. In a recording with relatively low noise levels,
five different types of action potential waveforms were isolated by
visual inspection, and waveforms of the same type were averaged to
form five templates, each represented by 32 samples (1 ms). These
templates, shown in Fig. 1(a), constitute the spike test set used in
this study. Recorded segments that contained no visually detectable
action potentials were used as neural noise segments in this study. The
neural noise was stationary and had a normally distributed amplitude
with zero mean and a standard deviation of 39.7 pV. Throughout
the paper, these data (waveforms and noise) are referred to as raw
data to distinguish them from the whitened data obtained by passing
the waveforms and the noise through a whitening filter. The signal-
to-noise ratio (SNR) was based on raw, not whitened, data and was
defined as the rms value of a waveform measured in a window of 1
ms divided by the standard deviation of noise (39.7 V). The range of
SNR’s in this study was obtained by scaling the relative amplitudes
of templates with respect to noise and by adding scaled templates
and noise.

B. Whitening

When the noise involved in the classification is stationary, normally
distributed, and colored, optimal Bayesian classification is achieved
by using the Mahalanobis distance [21], which is based on the
inverse of the noise covariance matrix. The Mahalanobis distance
is not suitable for online applications due to the large number of
computations that it requires. When the noise is white, i.e., without
temporal correlation, the noise covariance matrix is diagonal, and the
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Fig. 1. Spike templates and their noisy versions illustrate some of the noise
conditions under which simulations were conducted. (a) Neural waveform
templates. Each waveform is obtained by averaging several spike waveforms
of the same type taken from the recording. These five waveforms constitute
the spike test set. (b) Templates added to neural noise (a scaled part of segment
in Fig. 2(a) in which the MSEP is 10. Each template is located at the same
position as in (a). The SNR value for each noisy template is shown below
the corresponding waveform. (c) Templates added to neural noise with higher
variance in which the MSEP is 6.

Mahalanobis distance is reduced to the Euclidean distance. Therefore,
when noise is colored, the simpler Euclidean distance metric can
provide optimal classification if the data are first filtered with a
whitening filter [22].

We computed the autocorrelation function of neural noise using
a 16 ms noise segment from the recording mentioned above and
observed a significant amount of correlation (see Section III). Similar
autocorrelation was observed in several other such segments. The
whitening filter was based on an autoregressive moving average
(ARMA) model of the neural noise:

N(k) =3 aiN(k—i)+ Y bjH(k-j)
i=1 7=0

where N (k) is the recorded neural noise, H (k) is white noise, a; and
b; are corresponding coefficients, and u and v are the model orders
of the autoregressive and moving average components, respectively.
The coefficients a; and b; were computed to minimize the mean-
square prediction error of the ARMA model [23]. The inverse of this
model provided a whitening filter for the neural noise in this study.

C. Detection

Three techniques for detecting the occurrence of waveforms were
studied.



838

1. Amplitude detection where the decision variable was the sam-

pled voltage.

Power detection where the decision variable was the sum of

squared samples over a window of 32 samples.

3. Matched filter detection where the decision variable for each
waveform type was the inner product of the corresponding
template with 32 samples of data.

N

In each technique, the detection threshold was set at the least value
that produced no false positive errors.

D. Classification

A waveform was considered to match a given template when its
distance from that template was less than a predetermined acceptance
threshold. When a waveform matched more than one template, it was
assigned to the closest template.

When the noise is white, the signal-plus-noise distribution for each
waveform is hyperspherical, and optimal Bayesian classification can
be achieved using Euclidean distance between an unknown waveform
and known templates. In some pattern recognition applications, the
city block distance is used for its fast implementation. In this study,
the classification performance of the squared Euclidean distance
(SED) and city block distance (CBD) were compared using data with
and without whitening.

The SED is given by:

do =Y [S(h) = T(R)]

k=1

where S(k) is the data vector, T'(k) is a template, and n is the number
of sample points representing the waveform (32 in this study). For
both raw data and whitened data, the acceptance thresholds were
set at the lowest possible level that produced no exclusion errors.
The whitened noise power had a chi-square distribution, and the
acceptance threshold for whitened data corresponded to the 99.8%
level of the cumulative chi-square distribution.

The CBD is given by:

de = i di
k=1

with di = |S(k) — T(k)|.

An acceptance threshold for the CBD has been suggested in [6], based
on the assumption that d. has a normal distribution because it is the
sum of a large number of di’s. However, the central limit theorem
requires the components of the summation to be independent. We
computed the distribution of the random variable:

den = Y IN(K)]
k=1

for the colored and whitened noise, using 32 for n. In the colored
noise, the distribution of d.. was skewed to the left and was signif-
icantly different from a normal distribution. In the whitened noise,
the distribution of d.. was close to a normal distribution, especially
around the mean. However, the upper tail of this distribution was
more extended than the normal, and setting the threshold with the
assumption of normality resulted in about 5% exclusion errors due
to threshold, at all SNR levels. Therefore, we set the acceptance
threshold of the CBD at the lowest possible level that resulted in no
exclusion errors, in the colored and whitened noise tests.

E. Superposition Resolution

When a waveform is detected but fails to match one of the known
templates, the possibility that the waveform is the superposition of
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two known types embedded in noise has to be tested. The resolution
algorithm that we used compares the putative superposition waveform
to all possible combinations of each pair of templates with all possible
delays in the range of —1 to +1 ms between the two templates.
The window of this comparison is twice as wide as the individual
waveform window; in this study, superpositions are resolved using
64 samples for the waveform and the tested combinations. For each
tested combination, a set of SED values is obtained by aligning the
start of the combination with several samples surrounding the onset of
the unknown waveform. When the minimal SED obtained among all
SED values from all combinations is below the acceptance threshold,
then the pair of templates corresponding to that combination is
considered to indicate the constituent waveform types.

As in classification, the acceptance thresholds for both raw and
whitened data were set at the smallest values that caused no exclusion
€rTOrS.

III. RESULTS

A. Whitening

The neural noise and its autocorrelation function are shown in Fig.
2(a) and (b). The dotted lines in Fig. 2(b) represent the three standard
deviation boundaries for ideal white noise. A considerable autocorre-
lation is evident between lags of 2 and 10 samples. This significant
amount of color in neural noise suggests that the use of Euclidean
distance with raw data would be suboptimal and that whitening is a
prerequisite for optimal Euclidean distance classification.

We tested various combinations for the ARMA model orders u and
v in the range of 2 to 10 and evaluated the resulting inverse filter as
a whitening filter for neural noise. We obtained the best results with
w = 4 and v = 3. This whitening filter is described by

H(k) = (1/bo)

N(k) - ZaiN(k —i) - Zb]H(k -5

where
a1 = 0.946 bo=1
az = 0.106 g =163
a3 = —0387 °° by = 1.100
as = 0.167 by = 0.335.

The recursive whitening filter designed in this manner is stable with
poles inside the unit circle in the complex plane. The neural noise
segment of Fig. 2(a) was filtered with the whitening filter (initial
conditions set to 0) and produced the whitened noise shown in Fig.
2(c), whose autocorrelation function (Fig. 2(d)) remains in the range
expected from white noise.

B. Detection

We compared the effects of whitening on the detection algorithms
where signal amplitude, signal power, and output of a matched filter
were used. The raw test data comprised the five physiological neural
spike waveforms illustrated in Fig. 1 (spike test set) and various
levels of additive physiological (colored) noise. Instantaneous power
was computed over a 1 ms period. Fig. 3 shows the detection results
obtained with the three techniques as a function of SNR.

When matched filtering, power, and amplitude detection techniques
were applied to raw (colored) test data, 95% correct detection was
obtained above SNR levels of 1.5, 2, and 3, respectively. Whitening
improved the performance of matched filter detection by approxi-
mately 15%. Neither amplitude nor power detection were improved
by whitening. For equal performance, matched filtering, power, and
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Fig. 2. (a) A 16 ms segment of neural noise digitized at 32 KHz. (b) The

autocorrelation function of noise in (a). The dotted lines represent the three
standard deviation bounds expected from white noise. (c) White noise obtained
by filtering the noise in (a) with the whitening filter. (d) The autocorrelation
function of white noise in (c).

amplitude detection based on raw data required approximately 15%,
50%, and 120% more SNR than did matched filtering detection
based on whitened data. These ratios of SNR’s required for equal
performance were similar at all performance levels.

C. Classification

Classification performance depends on the similarity between dif-
ferent spike tests as well as the level of noise in the record.
Separability, the Euclidean distance between two spikes measured in
units of standard deviation of noise, has been suggested as a parameter
that reflects the ease of discriminating two spike waveforms [7].
The minimum separability (MSEP) in a group of spike waveforms
is defined as the minimal Euclidean distance between waveforms
measured in units of the standard deviation of noise [7] and serves
as a measure of classification difficulty. The correspondence between
MSEP and SNR at two levels of noise is shown in Fig. 1(b) and (c).
In this study, the MSEP value was measured on the raw data.

When classification tests with SED and CBD were applied to
the raw data, 95% correct classification performance was obtained
at MSEP values of 7.3 and 8.0, respectively (Fig. 4). Whitening
improved the performance of both algorithms, yielding 95% correct
classification performance at MSEP values of 5.2 for SED and 6.0
for CBD. Approximately 40% more MSEP (or SNR) was required
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Fig. 3. Detection test results as a function of SNR defined as the ratio of the
signal rms value (computed with 32 samples) to the standard deviation of noise
(computed on the complete noise record of Fig. 2(a)). Dotted curve, amplitude
detection on raw data; dash-dotted curve, power detection on raw data; dashed
curve, matched filtering detection on raw data; solid curve, matched filtering
detection on whitened data. The performance of each algorithm was assessed
with test data containing 100 occurrences of each type, i.e. 500 total spike
occurrences at each SNR level in the range of 0.4 to 3 with steps of 0.2.
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Fig. 4. Classification test results as a function of MSEP, with and without
whitening. Dotted and dashed curves show CBD and SED classification
respectively, on raw data; dash-dotted and solid curves show CBD and SED
classification, respectively, on whitened data. Each curve was obtained by
classifying 100 waveforms of each type, i.e., 500 waveforms at each MSEP
level in the range of 1 to 16 with steps of 0.2. The MSEP was computed
on the raw data.

for SED classification on raw data to obtain the same performance
as the optimal approach provided by SED on whitened data. CBD
required 10-15% more SNR than SED for equal performance on
both raw and whitened data. These percentage differences at 95%
correct performance were similar for other performance levels, e.g.
perfect classification performance with SED was obtained with MSEP
levels of 9 and 13 on whitened and raw data. Classification based
on amplitude discrimination of the raw data (not shown in Fig. 4)
was considerably worse, requiring SNR values 400% larger than the
optimal method for equal performance.

D. Superposition Resolution

Superposition waveforms were simulated by overlapping two tem-
plates and embedding the resulting summation waveform into noise
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SUPERPOSITION RESOLUTION
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Fig. 5. Superposition resolution performance as a function of SNR of the
smallest spike in the test set. The performance in the raw data is shown with
the dashed line curve, and that of the whitened data is represented by the
solid line curve. Each curve was obtained by resolving 100 superposition
waveforms at each SNR level in the range of 0.5 to 3 with steps of 0.25.
Each superposition was built with randomly selected pairs of templates with
random delay between 0 and 28 samples.

from the recording. Each superposition waveform was built by
selecting the two constituent templates randomly from the spike test
set and placing them with a random delay between 0 and 28 samples.
Resolution tests were run on raw and whitened data using varying
levels of additive noise.

A decomposition was considered successful when the algorithm
identified the two constituent spike types correctly. The resolution
algorithm required an SNR of about 1.6 for 90% correct performance
on the raw data. When whitened data were used, the same perfor-
mance was obtained at an SNR level of 1.25. Below an SNR of 1.25,
whitening increased the percent correct resolution by about 20%.

IV. DISCUSSION

Waveform recognition algorithms based on whitened neural record-
ings performed significantly better than the same algorithms operating
on the raw data. Without whitening, classification and superposition
resolution algorithms required 40% greater SNR values to provide a
performance equal to that obtained on whitened data. The comparable
difference in SNR for detection was 15%.

The utility of superposition resolution was also apparent. Super-
positions were resolved at the 95% correct level when the SNR
was 1.75. Essentially perfect resolution was achieved at SNR of 3.
The main source of error in superposition resolution is the similarity
between different spike types. Furthermore, even when spike types
are not similar, the superposition of two types may be very similar to
the superposition of two other types. At relatively low SNR levels,
this can cause an additional performance degradation, whose severity
depends on the superposition rate and the morphology of individual
waveforms.

In an automated system, ITor sources such as erroneous template
estimates, time quantization errors, baseline drifts, changes in amount
or nature of noise, gradual changes in spike waveforms, and a sudden
decrease in spike amplitude, e.g. when a neuron fires immediately
after its previous depolarization, can degrade the classification perfor-
mance. Some of these error sources can be eliminated; for example,
baseline drifts can be compensated by increasing the lower cutoff
frequency of the analog band-pass filter, and waveform trends can be
tracked with adaptive template updating. Some sources of error, such
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as time quantization and sudden amplitude drop, can be accounted for
by an appropriate modification in acceptance thresholds. Changes in
amplitude and nature of noise can affect the threshold estimates and
the whitening process; these errors can be prevented by regularly
monitoring the autocorrelation of noise and updating the related
parameters. Erroneous template estimates can occur when the record
has an excessively high level of noise or spikes are similar in shape
(very low separability). In such cases, optimal classification cannot
be expected due to the difficulty in generating accurate templates.

The whitening filter enhances the high frequency components
of noise and reduces the MSEP by about 10%. The seemingly
paradoxical improvement in classification under reduced MSEP can
be explained by the transformation that the data undergo in multidi-
mensional space. Clusters of each spike type have a hyperellipsoidal
distribution due to the autocorrelation of neural noise. The ec-
centricity of these multidimensional distributions is manifested by
the eigenvalue spread of the noise covariance matrix. In our raw
neural noise data, these eigenvalues ranged from 2.4 pV? to about
16000 #V? yielding a 80 : 1 ratio between the lengths of the longest
and shortest axes. In such cases, even when the MSEP is moderately
low (e.g. 5 to 8) the use of SED without whitening can cause
numerous errors. The whitening filter transforms the hyperellipsoidal
distribution of each type into a hyperspherical distribution that can be
optimally contained within the hyperspherical decision shell provided
by the SED threshold.
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An Image Processing Scheme to Quantitatively
Extract and Validate Hyoid Bone Motion Based on
Real-Time Ultrasound Recordings of Swallowing

Marc A. Cordaro and Barbara C. Sonies

Abstract— An image processing technique with associated hardware
was developed to quantitatively extract hyoid bone motion from real-
time submandibular ultrasound images recorded during the swallowing
act. Videofluorographic imaging, the “gold standard” of swallowing
studies, was recorded simultaneously and synchronized to the ultrasound.
Hyoid position obtained from the ultrasound was validated based on
the videofluorography using personal computer-based image processing
methods.

1. INTRODUCTION

In the clinical evaluation of swallowing physiology, several instru-
mental diagnostic techniques are commonly used, including videoflu-
orography (VF), ultrasound (US), manometry, and manofluorography.
Of these, the most commonly used technique is videofluorography,
which is often used exclusively and repeatedly with minimal consid-
eration of the risks of ionizing radiation. Videofluorography provides
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a dynamic, complete, pictorial, multiple plane visualization of the
oropharynx during swallowing. Submandibular ultrasound provides
a partial visualization of the oropharynx, including most of the
soft tissues such as the tongue and muscles of the mouth floor,
without known harmful effects, but fails to directly visualize the
bony structures of the mandible and hyoid bone. Ultrasound does
allow dynamic visualization of movement of the tongue, transport
of a bolus, and, indirectly, movement of the hyoid bone, and thus
captures the oropharyngeal swallow [1].

One parameter of significant clinical interest is the temporospatial
pattern of the excursion of the hyoid bone over the course of the
oropharyngeal swallow. This pattern is closely related to the ability
of the patient to protect the airway during bolus transport into the
esophagus, and is of primary clinical significance in the evaluation
of dysphagia [2]. Quantitative analysis of hyoid bone dynamics has
been performed on fluorographic image sequences [3], but image
processing has not been applied to the extraction of hyoid position
from ultrasound images of the oropharynx. Such extraction would
facilitate the transition of submandibular ultrasound from a subjective
visual inspection methodology to a quantitative clinical research
tool which may be safely used with children and normal subjects.
Such use will allow the development of a quantitative database of
swallowing parameters not previously possible with fluoroscopy due
to the radiation risk.

This paper describes the application of image processing instru-
mentation and methods to extract the position of the hyoid bone
from ultrasound image sequences. The technique is validated with
a frame-by-frame comparison of hyoid bone position extracted from
simultaneously recorded ultrasound and videofluorography over the
course of a swallow. The complex motions and morphology of the
swallowing mechanism make the application of a phantom study for
calibration and validation prohibitive; however, a qualitative anatomic
correlation has been performed using ultrasound images of a tongue
excised from a human cadaver [4]. Therefore, a comparison of
ultrasound to the “gold standard” (videofluorography) was chosen
for this pilot study.

II. METHODOLOGY

The requirements of the system include the ability to record US
and VF simultaneously and in synchrony onto video tape, digitize
both modalities frame by frame, spatially remap frames to eliminate
motion artifact, objectively extract hyoid bone position, and transform
the VF coordinate system to perform quantitative comparisons of
hyoid trajectory between modalities.

A. Simultaneous Real-Time Ultrasound/Videofluorographic
Recording

The real-time video signals from an Advanced Technology Labo-
ratories (Bothell, WA) Ultramark 9 ultrasound scanner with a 5 MHz
curved array (IVT) transducer and a standard videofluorography unit
were synchronized in time using two For-A video timers (0.01 s
resolution), which were slaved together with a common reset switch.
The two nonsynchronous video signals were recorded onto separate
Sony U-Matic VO-5800 video cassette recorders (see Fig. 1.). This
configuration allows both imaging modalities to be represented as
full resolution composite video frames with the timer values super-
imposed. The timer values were used to temporally align sequences
of video frames from each medium during digitization and analysis
of individual swallows.
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