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Harris, Kenneth D., Darrell A. Henze, Jozsef Csicsvari, Hajime of recording electrodes in a small amount of tissue without
Hirase, and Gyagy Buzsai. Accuracy of tetrode spike separationsignificant tissue damage and efficient isolation of action po-

surements] NeurophysioB4: 401-414, 2000. Simultaneous record-.

ing from large numbers of neurons is a prerequisite for understand'!%enerated by neurons ("unit” or "spike” activity) can be mon-
their cooperative behavior. Various recording techniques and spi red by extracellular glass pipettes, single etched (sharp)

separation methods are being used toward this goal. However, gCtrOdes’ or multiple-site probes. Th? closer the electrode to
error rates involved in spike separation have not yet been quantififd€ soma of a neuron, the larger the size of the extracellularly
We studied the separation reliability of “tetrode” (4-wire electrodeyecorded spikes. Whereas glass pipettes and high-impedance
recorded spikes by monitoring simultaneously from the same c&lnarp metal electrodes can be used to monitor the activity of a
intracellularly with a glass pipette and extracellularly with a tetrodsingle cell (Evarts 1968; Georgopoulos et al. 1993), these
With manual spike sorting, we found a trade-off between Type | arglectrodes are not always practical in freely moving animals
Type Il errors, with errors typically ranging from 0 to 30% dependingecause small movements of the electrode can damage the
on the amplitude and firing pattern of the cell, the similarity of thgeyron and because isolation of large numbers of neurons with
waveshapes of neighboring neurons, and the experience of the oﬂ‘?ﬂ'ependently moving drives is difficult (Kruger and Aiple

ator. Performance using only a single wire was markedly Iowe_[ 88; Llinas and Sasaki 1989; McNaughton et al. 1996)
indicating the advantages of multiple-site monitoring techniques ove(?9 ' ' 9 ' )

single-wire recordings. For tetrode recordings, error rates were inarger Slze wires can recor_d the aqt!V|ty of multiple neurons
creased by burst activity and during periods of cellular synchrony. TREd provide better mechanical stability because the electrode
lowest possible separation error rates were estimated by a searctifdiS not placed directly against the cell membrane. The use of
the best ellipsoidal cluster shape. Human operator performance wagltiple recording channels from the same neuron(s) provides
significantly below the estimated optimum. Investigation of errdmproved methods for single-unit sorting, based on the tempo-
distributions indicated that suboptimal performance was caused 3l coherence of spikes across channels (Drake et al. 1988;
inability of the operators to mark cluster boundaries accurately inGray et al. 1995; McNaughton et al. 1983; Nadasdy et al. 1998;
high-dimensional feature space. We therefore hypothesized that g¢cce and O’Keefe 1989; Wilson and McNaughton 1993). The
Itomaﬁc Spike'tsortilng f"goriT’Ps ha]}’e the F’Otet”tia' t.to Slig”if]ifar;.thﬁost widely used multiple-site probe, the wire “tetrode”
ower error rates. Implementation of a semi-automatic classifica : Wi
system confirms this suggestion, reducing errors close to the estim%t%g g(r;:tea}sngegrgr?se[)ea;—egdsgh \tlxgisrosn :tri]gl Ilz)ﬂgal\\tli?)%ggtsosnuriigng:g?that
optimum, in the range 0—8%. P . SP - ' . 9
neurons are point sources of action potential-associated cur-
rents.
INTRODUCTION There are three stages between the recording of extracellular
) ) ) unit activity and the identification of spikes representing the
Most knowledge about the physiological function of th@ctivity of a single neuron. The first stage is spike detection, in
brain is based on sequential analysis of single-site recordingich the electrical activity measured on the electrodes is used
Although it has long been recognized that the computationgl derive the times corresponding to extracellular spikes. This
power of complex neuronal networks cannot fully be recogs ysually achieved by high-pass filtering followed by thresh-
nized by studying the properties of single cells or the activiyiding and may be done by hardware or software. The second
of a few selected sites, experimental access to the emerggghe is feature extraction. During this stage, a feature vector
properties of cooperating neurons has largely been impossiQlg. an array of quantitative parameters) is calculated for every
until quite recently. Direct investigation of the temporal dyspike. In the simplest cases, the feature vector represents the
namics of neuronal populations can only be based on simulignplitude of the spikes recorded by the four tetrode sites. More
neous observation of large neuronal aggregates (Buzsaki eyglyanced methods quantify additional information about the
1992; Wilson and McNaughton 1993). The two critical regpikes, such as waveshape and discharge pattern. Waveshapes
quirements for achieving this goal are placing a large numbgfay be quantified by measuring parameters such as spike
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width, or by principal component analysis (Abeles and GoldAanual cluster cutting
stein 1977). The third stage is “clustering” of spikes. In this

sltage spikes W'tg similar featurze ve_itors fare.gr?uped 'n(t,ﬂ tom graphical interface program (gclust). This program allows the
clusters, assumed to represent the spikes of a single neurorbﬂs@rator to select two feature vector components to produce a two-

most laboratories, the clustering stage is done manually, withiighensional scatter plot for the chosen components. The operator then
graphical user interface that displays scatter plots in featwi&ws polygons in the two-dimensional space to assign spikes to
space and allows the operator to separate the clustersidajvidual clusters. By iteratively viewing different projections, the
drawing polygons or straight lines around them (Gray et alperator can refine the boundaries of clusters. The program also
1995; Rebrick et al. 1997; Skaggs and McNaughton 199@splays superimposed waveforms for each cluster, autocorrelograms
Wilson and McNaughton 1993; Wood et al. 1999). This prdor each cluster, and cross-correlograms for all pairs of clusters.
cess is time consuming, and may be affected by subjective

factors. It has been proposed that automatic methods nm@grrespondence between intracellular and extracellular
significantly speed up the clustering process, and reduce treces

effect of subjective factors (Fee et al. 1996; Lewicki 1998

The feature vectors were clustered using a previously developed

. : . " Intracellular action potentials were detected by the method de-
Sahani .1999’ Wright eft al. 1998). . ._scribed in the accompanying paper. As a function of the site of the
A major problem.wnh' aII. 'currently used SPI_ke Se_par_atlol?npalement of the neuron (somatic vs. dendritic), the delay between
methods is that their reliability cannot be verified with indeme peak of the intracellular action potential and the negative peak of
pendent methods, and thus errors inherent in subjective clig wideband recorded extracellular spike varied as much as 1 ms
tering by the human operator cannot be measured quantitaenze et al. 2000). However, the delay was constant for a given set
tively. Errors can occur because spikes belonging to differesftintracellular and extracellular recordings. Some jitter of the extra-
neurons are grouped together (false positive, Type I, or cofegllular peak was caused by the background activity. Therefore ex-
mission error) or because not all spikes emitted by a singf@cellular spikes corresponding to intracellular action potentials were
neuron are grouped together (false negative, Type Il, or omi entified if they occ_urred within Q.25 ms on elyher side of the_peak of
sion error). In this paper, we quantified the error rates of spi extracellular spike, as predicted by the intracellular spike. The

. . . . se positive error rate was determined as the percentage of spikes
sep(?ratlt?n metrr:ods. This was aghleve(?l tl)y Ismgl:}anemfs stered by an operator that were not correlated by the simultaneous
cording from the same neuron intraceliularly with a glaSgesence of an intracellular action potential. The false negative error
pipette and extracellularly with a tetrode (Henze et al. 200Rte was determined as the percentage of the intracellular spikes for

Wehr et al. 1998). This approach allowed us to reveal the majofiich the operator’s cluster did not contain a corresponding extracel-

causes of error in the spike separation process. lular spike.

METHODS Best ellipsoid error rates

Simultaneous intracellular-extracellular recording in To estimate the optimal clustering performance for a given set of
anesthetized rats feature vectors, we defined a measure called the “best ellipsoid error

_r . . . _rate” (BEER). This measure was designed to estimate the optimal
_ Description of the surgical and implantation methods are describglistering performance for a given set of feature vectors by searching
in the accompanying paper (Henze et al. 2000). over all possible ellipsoidal cluster boundaries. In the present context,
“optimal” may be defined in several different ways since it is possible
Spike detection to give different weights to Type | and Type Il errors. We therefore
. ] ] o _ introduced a “conservatism” parameter and defined the optimal ellip-
The continuously recorded wideband signals were digitally highipid to be the one that minimized a cost function equal to the weighted
pass filtered (Ha}mmlng wmdow-bqsed flnlte.lmpulse response flltgﬂ/eraged Type | and Type Il errors, with weights specified by the
cutoff 800 Hz, filter order 50). Spike detection was achieved by @nservatism parameter. By systematically varying this parameter, the
previously described system (Csicsvari et al. 1998). Briefly, the roEER method produced a curve, illustrating the trade-off between
mean-square power of the filtered signal was computed using a slidinge | and Type Il errors. The minimization of the cost function over
window. The mean and standard deviation of the power were coffie space of ellipsoidal cluster boundaries was performed by a two-
puted, and spikes were extracted when the power exceeded a threspglé neural network. The first or “input” layer contained one node for
derived from the standard deviation from the baseline mean. Th@ery element of the feature vector plus one node for each pairwise
spikes were then upsampled using the sampling theorem, and pagduct of feature vector elements (so for mdimensional feature

waveforms were realigned by peak position. vector, this layer would have + n(n +1)/2 nodes). The second or
“output” layer had a single logistic node which was trained to be 1 if
Feature vector extraction the spike belonged to the identified cell and 0 otherwise. The network

was trained by the “quickprop” algorithm (Fahlman 1988), modified
Feature vectors were extracted from the spike waveforms in timallow for differential weighting of Type | and Type Il errors. After

ways. In the first method, the feature vector consisted of the peak-tenvergence, the weights of the network specified an optimal qua-
peak (i.e., maximum-to-minimum) amplitudes of the resampled fitlratic criterion for spike identification, i.e., an ellipsoidal cluster
tered waveforms. In the second method, we employed a princifedundary. To reduce the training time of the network and to ensure
component analysis (PCA) to create feature vectors (Abeles ahdt it did not converge to an incorrect local maximum, the initial
Goldstein 1977; Csicsvari et al. 1998). For each channel, the k&lues of the weights were specified by the ellipsoid whose center and
sampled waveforms of all spikes were pooled and the first thrages were derived from the mean vector and covariance matrix of the
principal components of the waveform set were found. A 12-dimefeature vectors corresponding to intracellularly identified spikes.
sional feature vector was then created for each spike by projecting thé&rror rates were evaluated with a cross-validation method. The data
waveform on each channel onto each of the three principal compeere split into two halves consisting of even and odd spike numbers.
nents. The network was trained twice, once on each half of the data, and
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tested on the other half. This method produced two sets of erdusters with visible refractory period in the cross-correlogram were
percentages for each value of the conservatism parameter, i.e., jwdged to correspond to a single cell, and merged. In one case, a
error curves. The network was deemed to have converged, and trainster produced by the program showed a bimodal shape, and was
ing was terminated when the percentage errors on the test set hadiumged to correspond to two cells. This was confirmed by the cross-
changed more than 0.1% within the last 15 training epochs. The firalrrelogram of the two subclusters, which showed no refractoriness or
percentage error value was then taken to be the mean error value duest shoulders.
these last 15 epochs. The computations were performed on an IBM
SP2 station (IBM, Armonk, NY) with a custom written4Ct pro- pegyiTs
gram.

The BEER measure provides an estimate of the optimal perfd&frors of human operators

mance of any clustering system, automatic or manual. It determines . .
the location of the optimal cluster based on a knowledge of which We recorded from 33 neurons in 30 rats, both intracellularly

spikes correspond to the identified cell (i.e., it performs superviséid extracellularly (Henze et al. 2000). Of these, we selected
learning). This is only possible because of the simultaneous intracgix data sets from three neurons, which contained sufficient
lular recording. Manual or automatic spike sorting systems will nefction potentials for statistically significant error analysis, and
have this knowledge (i.e., they must perform unsupervised learninghich represented various levels of difficulties in clustering
The BEER method therefore estimates an upper bound on the perfiiated to amplitude and “burstiness.”

mance achievable by any unsupervised system. This upper bound W”Nine human operators were asked to cluster the feature
be approached by an automatic system based on an accurate pngEfor sets for these six sessions. The error rates of the oper-

bilistic model in the limit of a large number of data points (Anderso ) :
1984). It should be emphasized that the ellipsoidal cluster bound%ﬂ?rS are shown in Table 1 and Fig. 1. There was a spread of

used by the BEER measure is not necessarily optimal. Even feifOr rates with some operators being more “conservative”
perfectly ellipsoidal clusters, the optimal cluster boundary will bémaking more false negative errors but less false positive
given not by a single quadratic but by an intersection of quadratics.g&rors) and others being more “liberal” (making less false
search over all such boundaries is possible in theory but would requiregative errors but more false positive errors). The same op-
excessive computer time. Therefore the BEER measure may undsrators fell in similar portions of the scale on several data sets,
estimate optimal possible performance. indicating some individual bias. In general, neurons with lower
amplitude spikes, burst patterns, or several simultaneously
Prediction of cluster covariance matrix from background active neighbors were more difficult to cluster. The potential
activity causes of the human errors are considered in detail in the

To compare the cluster shape to that predicted by a fixed spiﬁ?e“owmg text.
shape superimposed with background noise, we extracted periodS€&SES OF ERROR. Similarity of spikes of different cell&ig-
background activity containing no extracellular spikes. These wenee 2,A andB, insetsjllustrates the mean extracellular wave-
determined by removing 32 samples around every extracellulaftyrms of an identified cellgell 2in Table 1) together with the
detected spike and retaining any remaining intervals of 100 samples@san waveforms of spikes emitted by another cell recorded by
longer. The auto- and cross-covariance functions of the backgroypé same tetrode. The latter neuron was not intracellularly
activity were determined from these periods. These functions wele-orded. and spikes of this cell were determined by our
used to create Toeplitz matrices for the time-domain Covariant%fgndard,clustering method. Based on our cell classification

matrix between each pair of channels. The covariance between . . . .
principal components for the selected channels was then obtainedbjeria (Csicsvari et al. 1999), this second cell was also a

pre- and post-multiplying by the time-domain projection templag@Yramidal cell. The amplitude profile of the confounding cell
used to generate the principal components. Analysis was performe@f0ss the four recording sites was very similar to the identified

MATLAB (The MathWorks, Natick, MA). cell. This similarity is also visible on the cluster diagram of the
first principal component (Fig.A). There is considerable over-
Detection of sharp waves lap between the spikes of the identified neuron (red) and

_confounding unit (green). However, the wave shape of the

_Sharp waves were detected based on the occurrence of their agsifounding cell was different from the identified neuron. The
ciated high-frequency ripples. Broadband extracellular signals wetg, 5-ominent difference was a larger “initial positivity” and

filtered between 100 and 250 Hz using a digital finite impulse r%"ﬂsmaller late positive wave after the large negative deflection

sponse filter, rectified, and smoothed using a median smooth diff . f led by th d
algorithm (LabView, National Instruments, Austin, TX). The occur- €se arerences in waverorm were reveale y the secon

rence of a ripple was determined based on a deflection of the pR¥incipal component (Fig.B. )
cessed extracellular signai7 SDs from the baseline. The start and We assumed that the difference in waveshape between the

end of the ripple were then determined from the closest zero valu#g pyramidal cells was due to electrode placement relative to

preceding and following the threshold crossing. the somatodendritic axis. To test this assumption, we recorded
units with a linear six-site silicon probe (“hexatrode”) (Wise
Automatic cluster cutting and Najafi 1991). Figure @ shows the mean waveform for

. _ _ each of the six sites along the probe for a presumed pyramidal
To gauge the practicability of automatic cluster cutting, we testeg, ,ron clustered in the usual manner. The waveform of the
the program AutoClass (Cheeseman and Stutz 1996, http://ic- Q@ varied as a function of distance from the soma in the

arc.nasa.goc/ic/projects/bayes-group/autoclass). The program o . . .
used with the multivariate normal mode, with two parameters chang% Matodendritic axis, supporting the hypothesis that the wave-

from their default values (max_n_tries50, rel_delta_range 0.01), sSnape produced by a single cell can be very different at
to reduce running time. As AutoClass tended to overcluster the da@ifferent recording sites. These features of hexatrode-recorded
the output of the program was further examined by a human operatdfit activity may be exploited for the improvement of cluster-
using the same program used for manual cluster cutting. Neaig methods in the future.
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TABLE 1. Operator error rates

Data Set
1 2 3 4 5 6
FP FN FP FN FP FN FP FN FP FN FP FN

Operator

K 10.0 14.3 7.4 16.6 0.2 11.7 1.2 17.0 1.1 22.9 3.8 25.1

H 3.8 26.7 6.0 115 14 1.3 1.3 16.2 0.5 21.3 3.1 20.1

D 9.4 16.1 0.7 19.7 0.4 3.3 1.6 10.1 11 9.1 15 21.2

C 4.2 5.6 0.9 3.2 2.3* 67.3* 0.8 125

J 6.4 16.4 6.1 14.7 0.2 8.8 15.9 20.3 0.8 19.2 11.6 235

G 7.2 14.4 23.9 6.3 1.1 5.9 43.4 14.2 0.5 16.5 X X

R 7.3 27.0 20.3 8.5

X 31.2 1.9 5.4 9.6 0.4 23.8 8.8 25.1 0.5 20.9 2.2 19.4

2 0.7 2.9 10.0 111
Mean 10.8+ 92 16.7+85 9.2+8.2 11.5-5.0 0.7 04 7.6+x7.4 11.7+=15.0 16.2+=5.2 0.8+ 0.3 17.525.1 4.4+41 219+ 24
Automatic system 8.0 5.9 0.2 53 0.0 35 1.4 59 0.2 4.0 4.3 7.5

Amplitudes V) and number of spikes for data sets, respectively, were 1: 50 and 1,952; 2: 76 and 2,462; 3: 117 and 690; 4 (bursting): 68 and 1,682; 5:
and 1,420; and 6: 59 and 1,010. MearsSD. FP, false positive, Type |, or commission error; FN, false negative, Type Il, or omission error; X, a session where

the operator did not identify the intracellular unit. *, a session where the operator divided the spikes of a bursting cell into two clustersdiogrésanly
and late spikes within the burst (excluded from mearsD calculation).

Variability of extracellular wave shapes from a single cellpoints, though, start to diverge, and at least eight points can be
The “clouds” identifying individual clusters (i.e., hypothesizedonsidered definite outliers. What is the cause of the variability
neurons) were variable in shape and size. What determines dfieghese outlying spikes? The waveshapes of the three most
spread of points in a cluster? In other words, what is thextreme outliers are shown in FigB3superimposed on the
probability distribution for the feature vectors of a cell irmean waveform for the whole cluster. A closer inspection of
cluster space? A first assumption is that the feature vectting individual spike waveforms suggests that the altered shape
follow a multivariate normal distribution. One way to test thisvas caused by the presence of another cell's spike overlapping
is by calculating the Mahalanobis distance of points from theith the spike of the intracellularly identified neuron. The
cluster center (Gnanadesikan 1977; Johnson and Wichewxample illustrates that for “nonbursting” cells the clusters are
1992). Under the normal distribution assumption, the Mahapproximately normal, with only a minority of the spikes as
anobis distance of points from the cluster center will hayé a outliers. We could not divide the spikes into two groups
distribution. The quantile-quantile plot in FigAZompares the (overlapping vs. nonoverlapping), most likely because the sec-
predicted and empirical distribution. Approximately 98% obndary cell(s) causing the spike variability may be any distance
the data points lie along the diagonal, confirming that thef®m the identified cell. Therefore the magnitude of distortion
spikes are distributed normally. The remaining 2% of thef any given spike may vary continuously from large values to

Cell 1 — Mean Amplitude 50puV Cell 2 - Mean Amplitude 76pV Cell 3 - Mean Amplitude 117uV
50 50 . 50
— Peak to peak
- - 1PC
2 40 ® 40 * 40 --2PC
5 5 5 3PC
S 2 2
030 &30 930
2 = =
= 3 5k
(=2} [=2} [=)]
220 £20 £20 ) )
9 2 g FiG. 1. Error rates for clustering axis: percentage of
€ 10 € 10 £ 10k operator-marked spikes that do not correspond to the iden-
tified cell (Type | or commission errory. axis: percentage
. = g of identified spikes that were not marked by the operator
OOC 10 20 30 40 50 OO 10 20 30 40 50 0 10 20 30 40 50 (Type Il or omission error). Each plot corresponds to a
False Positive Error % False Positive Error % False Positive Error % separate recording session. The last 4 sessions are the same
cell recorded under different conditions of burst mode and
Cell 3 BURSTING - Mean Amplitude 68uV  Cell 3 - Mean Amplitude 71uV Cell 3 - Mean Amplitude 58uV amplitude, Individual human operators are identified by
50 50 50 letters. The performance of the AutoClass program is indi-
cated by A. The lines indicate theoretically optimal perfor-
52 40 2 40 R mance, determined by a computer search for the ellipsoidal
g I g 8 cluster shape that minimizes a weighted average of false
Yol 30 u positive and false negative errors. PC, principal component.
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zero. This hypothesis would explain the slow trend away froform of population activity calledsharp wave burstSharp
the straight line (predicted values), instead of a distinct grouyaves in the stratum radiatum are associated with a coherent
of “overlapping spikes” (Fig. B). 200-Hz field oscillation in the pyramidal cell layer (“ripples”)

In addition to overlapping spikes, what else determines th@d phase-locked discharges of pyramidal cells and interneu-
shape of the clusters? Possible variables include the effectrafis (Buzsaki et al. 1992). In the anesthetized preparation, as
background field and unit activity and/or variability of theused here, the ripple frequency is lower (120 Hz on average)
amplitude and shape of the intracellular action potential (Henaad the incidence of population bursts is lower (Ylinen et al.
et al. 2000; Nadasdy et al. 1998). For a normal distributioh995). We studied the effects of sharp wave-associated ripples
cluster shape is characterized by the covariance matrix. Figore the error rates of unit clustering. Figuréd &hows the
3C shows a pseudocolor image of the covariance matrix fomp@rformance of human operators and the BEER measures (see
cluster of intracellularly identified spikes (after outlier removfollowing text) during epochs when the spikes occurred in
al). This can be compared with the predicted covariance mateagsociation with field ripples. For this cell, the error rate
(Fig. 3D) under the hypothesis that the variability of spikéncreased dramatically during ripples up to 50% for Type | and
shapes is caused purely by background field and unit activifype Il errors. The majority of the error increase was for Type
(seemeTtHoDS). The two matrices are strikingly similar, indi-1 (false positive) errors, indicating the false inclusion of other
cating that for this nonbursting cell, the shape of the clusterusits with the “target” unit. The minimum achievable error, as
determined mainly by superimposed background field and ueitimated by the BEER measure, also increased significantly.
activity. Even when all three principal components were considered, the

EEG field and cellular synchronyuring sleep and awake combined errors could exceed 20—30%, reflecting a four- to
immobility, the hippocampus from time to time expresses favefold decrease of spike isolation reliability for this cell
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Fic. 3. Analysis of cluster shape for a nonbursting call.x? plot for the feature vectors for a single cell in 12-dimensional
space @ata set Iof Table 1). If the data are normally distributed, the Mahalanobis distance will follgtyadistribution (indicated
by the red dot-dashed line). The inner 98% of the data fits this well. However the final 2% diverges, and there are 8 extreme outliers.
B: waveforms of the 3 most extreme outliers, superimposed on the mean spike waveform for this cell (gray). The outliers appear
to be caused by the overlap of a spike from the identified cell with anotherGgliseudocolor plot of the 1X 12 covariance
matrix of the cluster of identified spikes. Column and row order index by principal component number (1-3) and channel number
(1-4).D: covariance matrix predicted by the power spectrum of the noise. This is very similar to that 8eindicating that
for this cell, the spread of the cluster is caused mainly by superimposed background noise. Color sCaesl Brarbitrary units.

during ripple-associated population synchrony of CA1l neu- Complex spike bursts of single pyramidal ce$éngle hip-
rons. Examination of errors for all operators and data sgiecampal pyramidal cells exhibit “complex spike” bursts
indicated that in the presence of field ripples, Type | errof®anck 1973), which cause variability of amplitude and wave-
increased more substantially than Type Il errors (FigC4, form. To investigate the effects of complex spike activity on
andD). the extracellular clusters, we simulated regular bursting dis-
Figure 48 illustrates the mean wave shapes of the intracatharges by injection of short, strong depolarizing current steps
lularly identified cell. Although spikes detected during th€0.5 nA for 40 mS; intra-burst firing frequency200 Hz).
ripple were phase-locked to a highly rhythmic “ripple” EEGFigure 5A shows the cluster diagram containing the bursting
background (not shown), the amplitude and waveshape of t@l (red;cell 4in Table 1) and the averaged waveforms of the
average filtered spikes in the presence and absence of ripglescessive extracellular and intrasomatic spikes during the
were quite similar (Fig. B). However, the standard deviationburst (Fig. B). The dominant effect on the cluster shape is the
was twice as high in the case of ripples compared with theihange in amplitude. The cluster of the identified cell is
absence. This finding indicates that digital filtering800 Hz) “stretched” compared with the clusters of other cells. The
successfully removed the ripple field effect. We thereforghange in cluster shape was also reflected in the covariance
conclude that the major factor contributing to errors duringatrix. Figure 5,C and D, shows a similar analysis as illus-
sharp wave-associated ripples is the superimposition of otleted for the nonbursting cell in Fig. 3. For the bursting
synchronously firing neurons. neuron, the cluster shape is no longer similar to that predicted
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FIG. 4. Effect of cellular synchronyA: operator error
rates and theoretical optima fdata set 1restricted to
hippocampal sharp wave burst (ripple) periods. Both op-
erator error rates and theoretical optima increase dramat-
ically relative to epochs not containing population bursts.
B: mean and standard deviation of filtered waveforms of
identified spikes during and outside of ripple periods. The
mean waveform and amplitude are very similar but stan-
dard deviation increases. This indicates that the degraded
performance is not due to contaminating synchronous
field activity. C andD: scatter plots of overall error rates
vs. error rates restricted to sharp wave periods. False
positive errors are more seriously affected, suggesting
that the main cause of error is the firing of otherwise
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by the background activity. Instead we see increased varianotal number of spikes dafell 1. They axis can then be read in
in amplitude, and a strong correlation between the amplitudesrtz, and the value at timteinterpreted as the probability of
on all recording sites. cell 2firing per unit time, given thatell 1 fired a spike a time
t ago (Moore et al. 1970).

In the case of two completely unrelated spike trains, the
cross-correlogram is expected to be flat, with value in hertz
It has been proposed that the neuron’s spike refractag@gual to the firing rate otell 2. Even if the cells show an

period, as reflected by the absence of spikes at short intervateraction (e.g., itcell 1 drivescell 2), we expect the asymp-
in the autocorrelogram, can be used as a reliable indicatortofic value of the cross-correlogram at long times to be equal to
whether the recording was made from a single cell or frothe firing rate ofcell 2. For an autocorrelogram of a single
multiple neurons. Conversely, cross-correlation of two clusteisolated cell, we expect that the asymptotic value will be equal
with a common refractory period is taken as an indication thtd the firing rate of the cell. For an autocorrelogram of a poorly
the clusters actually represent the same cell (Fee et al. 19@6Jated cell, the central bins in the autocorrelogram (i.e., the
Johnston and Wu 1995). refractory period) reflect the frequency of contaminating
Auto- and cross-correlograms provide valuable help durirgpikes.
the clustering process. However, they should be interpretedThe heights of the autocorrelogram “shoulders,” if they
with caution, due to the possibility of factors causing two cellexist, are set by a different time scale. The shoulder height
not to co-fire (such as spatially separated place fields) or tteflects the probability per unit time that a spike will occur
presence of effective monosynaptic connections (Csicsvarigdten that another spike occurred one intra-burst interspike
al. 1998). Comparison of autocorrelograms of clustered spikieserval ago. The shoulder height is therefore of the order of the
and intracellular action potentials further helped to clarify thgrobability that a given spike participates in a burst, divided by
situations where correlograms may be safely used. Figuke 6the variability of the intra-burst interspike intervals. Because
and B, illustrates the autocorrelogram of a poorly isolatethis variability is <1 ms, the height of the autocorrelogram
cluster (Type | error: 43.4%). The presence of spikes in tisdoulders will be orders of magnitude larger than the central
refractory period €2 ms) indicated the contamination of otheportion of the autocorrelogram, even for a poorly isolated cell.
units. However, the height of the autocorrelogram in the centralThe central portion of the autocorrelogram should therefore
(refractory) portion was quite small relative the large “shouhot be compared with the shoulders but with the asymptotic
ders” surrounding it. Does this mean that Type | (false podieight at long times. For illustration purposes, we considered
tive) error was negligible? To get an insight why even in theimulated spike trains. FigureCéshows an autocorrelogram
presence of “confounding” spikes the autocorrelograms lockeated from spikes of a mixture of two simulated bursting
“normal,” we must consider the mathematical properties etlls with equal firing rates (2.5 Hz) and 3-ms refractory
correlograms in more detail. periods. The refractory period (central part) of the correlogram
To simplify the discussion, we scaled thyeaxis of the looks reasonable when compared with the height of the shoul-
cross-correlogram to represent the “cross-intensity functiodérs. However, when the number of spikes in the refractory
(Moore et al. 1970). This is achieved by dividing the numbegeriod is compared with the asymptotic portion of the auto-
of counts in each bin by the product of the bin length and tleerrelogram (Fig. B), it becomes clear that the spike train did

Postclustering tools: autocorrelograms and correlograms



408 HARRIS, HENZE, CSICSVARI, HIRASE, AND BUZSKI

A B Waveform Change During Burst
20t

o

E g s

El

< -20

b 2 Normalized

0 = _4po| Intracellular Exheceliolar

(92

E _

c -60r

@® f

-80t |
Channel 2 PC 1 (Amplitude) 0 0.5 1
ms

C Covariance of identified spikes D Covariance as Predicted From Noise
8000
6000
4000
2000
0
-2000

Fic. 5. Analysis of cluster shape for a bursting cdll.cluster diagram for a data set containing an intracellularly identified
bursting cell (redsession 4n Table 1).B: superimposed mean waveforms for the 1st to 6th spikes of a burst, showing a clear
amplitude decrementeft inset corresponding mean intracellular waveforRgght inset extracellular waveforms normalized by
amplitude, showing wave shape change during b@stovariance matrix for the bursting cell, showing a high correlation in
amplitude across the 4 channdls.covariance matrix as predicted by the power spectrum of the noise. For this bursting cell, the
cluster shape cannot be predicted from the noise alone, indicating that spike shape variabilility during the burst causes significant
change in cluster shape.

not derive from a single neuron. In the case of slow dischargingay not be taken as a guarantee that the clusters do not both
cells or short recordings, there may not be enough spikes in tlantain spikes from a common nonbursting cell.

central portion of the autocorrelogram to allow accurate com-

parison to the asymptotic region. In these cases, the autochiieoretically optimal performance

relogram cannot be used to determine the successful elimina-Errors are caused by overlapping clouds in cluster space. Is
tion of Type | errors. y pping pace.

. it possible to improve error rates by determining more appro-
The cross co_rrelog_ram can also be useful for e_valuatmg tﬁ?%)ate boundaries between clusters? We addressed this question
success of cell isolation (Fee et al. 1996). In particular, shoyi-

e using an estimate of maximum possible performance,
ders of the cross-correlogram for two clusters may indicate tr} fmed the BEER (seeeTHoDS). This measure gives an esti-

both clusters contain spikes produced by the same burstifigie of the minimum error rates for an optimally positioned
neuron (Fig. 6,E and F). Asymmetric peaks, in particular, gjlipsoidal cluster, given the positions of the correct and incor-
indicate that the decreasing amplitude spikes of a burst hgwt spikes. Furthermore the BEER measure allows for a dif-
been put into separate clusters. Asymmetric cross-correlogrggfential weighing of Type | and Type Il errors, parameterized
peaks may also be caused by direct coupling of two cells, s a “conservatism” parameter. Therefore the BEER measure
those observed in rat hippocampus may be distinguished frg@ecifies a curve showing the tradeoff between Type | and
misclassified bursting cells on the basis of a characteristigpe Il errors as this parameter varies from 0 to 1.

narrow single cross-correlogram peak (Csicsvari et al. 1998).Figure 1 shows the estimated minimum possible errors,
Conversely, the absence of shoulders in a cross-correlogrsmperimposed on the performance of the human operators.
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cell 2,and Fig. 2). There was also a slight further improvement
by using three over two principal components but this differ-
ence was much smaller than the difference between the use of
one versus two principal components. In general, the perfor-
mance of human operators was similar to the BEER perfor-
mance when only the peak-to-peak amplitudes or one-principal
component was used. It must be noted here that the human
operators had all the principal components to work with and
could get additional information from examination of spike
waveforms and auto/cross-correlograms. Importantly, all hu-
man operators did worse than the theoretical best achieved
using all three principal components. The difference between
human operators and BEER measures was least when the
extracellular amplitude of the impaled cell was relatively large
and did not burst.

ACG (Hz)
=
o

-50 0
ms ms

C Simulated Cells D Simulated Cells - close up

Analysis of human operator errors

To assess how performance could be improved, we analyzed
the distribution of operator errors on the most difficult neuron,
(cell 1 of Fig. 1). Figure 7 displays the correctly identified
spikes along with the false positive and negative errors made
by an operator in a single two-dimensional projection. When
the first principal component projections were displayed in the
cluster space, errors occurred in a shell surrounding the cluster
of correctly identified spikes. Furthermore more errors oc-
curred at the border with small-amplitude spikes (Fig).7
Examining Fig. A, one could form the impression that the
clustering performance cannot be substantially improved: de-
. . 5 creasing Typ_e I_errors can be achieved only by increasi_ng Type
ms ms Il errors. This impression was supported by calculating the

FIG. 6. Auto- and cross-correlogramé: autocorrelogram for a poorly Mahalanobis distance in the two-dimensional space for the
separated celloperator G, data set 4Type | error 43.4%)B: close-up ofd,  correctly identified spikes, the false negative errors and false
showing some contamination of the central refractory port@nautocorre- positive errors (Fig. B). The correctly identified spikes oc-
logram for 1-h-long simulated spike train. Two cells were simulated with a@élrred closest to the center of the cluster, the false positive

average firing rate of 2.5 Hz and a bursting pattern. Although the combin . .
spike train consists of 2 independent cells, it appears to have a clear refrac {}Ors closer to the perlphery, and the false negative errors

period, when scaled by the burst shoulder heightclose-up ofC, showing Were the furthest out of a.” (F|gBa However, a different _
that the autocorrelogram height during the refractory period is approximatglycture arose when the third-principal components were dis-

half the asymptotic heighE: cross-correlogram showing large asymmetriqg|layed. These projections are rarely used by human operators

peaks, indicating that 2 clusters both contain spikes from a single bursting q%cause the spikes of different cells do not form Well-separated
(operator C, data set 4 F: cross-correlogram for of 2 well-isolated clusters

with no systematic interaction between the 2 neur@handF, insets auto- ClOUdS. However, displaying the third-principal components
correlograms of the individual clusters. revealed that the false positive errors occurred actually further

out than the false negative errors (Fig)7Similarly when the

Curves were generated using the peak-to-peak spike heilytathalanobis distances were calculated in the full 12-dimen-
only, the first principal component only, the first and secorglonal space, the false positive errors occurred farther from the
principal components, or the first three principal componentsnter of the cluster than the false negative errors (H. 7
For each calculation, two BEER curves were generated byThis conclusion was borne out in 46 of the 48 clustering
cross-validation method, in which the ellipsoid position wasessions across all operators (Fi§).7
determined from half of the data (even or odd numbered The preceding analysis indicated that the clusters created by
spikes) and evaluated on the other half. Examination of the twlte operators were not optimal. A plausible explanation is that
sets of curves provides an estimate of the minimum achievableman operators are able to use only two dimensions at a time.
error, whereas the difference between them is an indicationlofany two-dimensional plane, the expected amount of cluster
the accuracy of this estimate. overlap is always more than in the full high-dimensional space.

As was the case with the human operators, the BEER cuniasontrast to the human operator, the BEER estimation can use
indicate a trade-off between false-positive and -negative erroafl. dimensions at once. This may explain the significantly
For all data sets, there was a strong distinction between thever error rates of the BEER method.
errors generated by the use of the peak-to-peak measures or the
first principal components onIy_ versus th_e use of two- andtomatic cluster cutting
three-principal components. This was particularly striking for
the data set in which the intracellularly identified unit had a The previous analysis has indicated that the performance of
confounding unit with a similar amplitude distribution (Fig. Thuman operators was below the theoretical optimum, as esti-
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FIG. 7. Analysis of operator erroré: errors made bgperator Koncell 1, shown in one of the projections used by that operator
when cluster-cutting. False positive errors (red) are located within the cluster area and false negative errors (greerB: outside.
histograms of Mahalanobis distance from the cluster center in this 2-dimensional space. As expected, false positive errors are
further toward the center than false negative errGreerrors plotted in a projection not used by the operator. Unexpectedly, false
positive errors are now further out than false negative erfarbistograms of Mahalanobis distance for the human operator in the
full 12-dimensional feature space. False positive errors are again further out than false negative:enalysis of all clustering
sessions. In every case but 2, the mean Mahalanobis distance in the 12-dimensional space is larger for false positive than for false
negative errors. This indicates that the performance of operators is suboptimal because of their inability to visualize the full
12-dimensional space.

mated by the BEER method, and that this may be due to e same cell (Fig. B). The clean refractory period in the
inability of human operators to visualize the multidimensionaross-correlogram for all three clusters, and the asymmetric
cluster space. It is therefore of interest whether automatiooss-correlograms between the red cluster and the green
clustering systems reduce the error rates made by the huraad blue clusters, suggested that the latter may correspond
operators. to correspond to subsequent spikes of the bursting cell. This
Several approaches to automatic spike sorting have begmsupported by the larger amplitude of the earlier discharg-
proposed (Fee et al. 1996; Lewicki 1998; Sahani 1999; Wrigintg (red) spikes. Examination of other auto- and cross-
et al. 1998). In our investigation, we examined the applicabiligorrelograms (not shown) indicated that no other clusters
of a general-purpose clustering method designed to automatiresponded to the bursting cell, and that the small-ampli-
cally classify various types of data (Cheeseman and Stutmle yellow, mauve, and pink clusters, and the diffuse gray
1996). cluster do not correspond to single units. The final clusters
Figure 8 shows the raw output produced by the programre shown in Fig. 8. We refer to the process of automatic
on session 4,jn which the intracellular cell was bursting.cluster determination, followed by manual reassignment as
The program generated nine clusters. However, examinatieemi-automaticlustering.
of autocorrelograms indicated that three of these clustersThe tendency of AutoClass to overcluster the data was
(shown in red, green, and blue) corresponded to spikes frdrorn out in the other five recording sessions. The output of
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FIG. 8. Semi-automatic cluster cutting: the output of the AutoClass program (Cheeseman and Stutz 1996). The 9 clusters
produced are shown in different coloBs.auto- and cross-correlograms for the spikes in the red, green, and blue clusters. The clean
refractory periods in all cross-correlograms indicate that the 3 clusters correspond to a single cell. The asymmetric cross-
correlograms between the red cluster and the other 2 suggest that it the red cluster contains the earlier spikes in the burst. Similar
analysis of the yellow, mauve, pink, and gray clusters indicated that they did not correspond to singl& wenised clusters after
manual merging by a human operator.

the program was examined by an operator in each case, &uamparison of tetrode to single-wire performance
clusters deemed to have belonged to the same cells were
merged. Insession 6the program also produced a bimodal While tetrodes are often acknowledged to provide more
cluster, which was deemed to contain the spikes of twagcurate spike separation in hippocampus (Drake et al. 1988;
cells. The cluster was split manually, and the distinctness iicNaughton et al. 1983; Nadasdy et al. 1998; Recce and
the two subclusters was confirmed by a flat cross-correl®*Keefe 1989; Wilson and McNaughton 1993), and necortex
gram. (Gray et al. 1995; Wright et al. 1998), single-wire recordings
The error rates of the semi-automatic system (AutoClaage still often used in many studies (Deadwyler and Hampson
followed by manual cluster merging) are shown in the bottod995; Hampson et al. 1999; Nicolelis et al. 1997). We charac-
line of Table 1, and are marked by A in Fig. 1. In all six filesterized the improvement gained from tetrode recordings by
the performance of the semi-automatic system was better tlrmmparing optimal possible performance using only one of the
that of any human operator. Furthermore in every case, ttatrode channels relative to optimal performance using all four.
performance of the semi-automatic system was comparabld-igure 9 shows the optimal performance estimate for the six
with the theoretical optimum as estimated by the BEER megecording sessions using each channel individually compared
sure. We therefore confirm that automatic cluster cutting, wfith optimal performance using them all together. In each plot,
followed by proper postclustering examination and adjustmetite four pairs of dotted lines show estimated optimal perfor-
can indeed lead to lower error rates than manual spike sortimgnce for each of the four sites, and the single pair of solid

methods. lines shows estimated optimal performance for the full tetrode.
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All three principal components were used (Abeles and Goldhen filtered traces of spikes collected during the presence and
stein 1977). absence of ripples were compared, they were identical in
The error estimate for single wires differed greatly from wiramplitude and shape, indicating that digital filtering success-
to wire with the worst wires showing Type | and Type Il errordully eliminated the effects of nonspike related background
both exceeding 50% and therefore off the scale of the plotsflactuations. However, in contrast to the similar mean spike
Fig. 9. However, even the best wires show poorer performaneaveforms, the variability of spikes was substantially larger
than tetrodes with error rates typically double those for the fuduring ripples than in their absence. A likely reason for this

tetrode. increased variability is the random superimposition of spikes
tightly coupled to the negative peaks of ripple waves (Csicsvari
DISCUSSION et al. 1999). If a cell fires during the spike of another neuron,

the resulting waveshape will be the combination of the two
We used simultaneous intracellular and extracellular recorspikes. If the added spike(s) sufficiently alters the amplitude

ings to quantify errors of manual spike separation methods. @istribution and shape of the spike of the neuron to be clus-
date, no other methods have been available for an independentéd, an omission (false negative) error will occur. Con-
and objective evaluation of any on- or off-line unit classificaversely, superimposition of smaller amplitude spikes may re-
tion methods. Because of the subjective bias and differisglt in spike waveforms sufficiently similar to be incorporated
degree of experience of the individual human operators, rinto the cluster of the larger amplitude neuron, thus increment-
only the overall error rates but the types of errors inherent ing false positive errors. We hypothesize that a major contrib-
manual methods are expected to vary across different labouéing factor to Type | error is the increased probability of
tories. For several types of investigations, multiple-unit recordischarge of many nearby neurons in a narrow time window.
ing or contaminated single-unit recording may be adequate have estimated that a single tetrode can monit@00
However, the analysis of emerging, cooperative activity @lusterable neurons in the CA1 pyramidal layer (Henze et al.
single neurons (Buzsaki et al. 1992; Deadwyler and Hampsp000). In contrast to this large number, typicatyl0 of these
1995; McNaughton et al. 1996; Nadasdy et al. 1999; Riehlereicordable cells are routinely clustered in the awake behaving
al. 1997; Skaggs and McNaughton 1996; Wilson and Menimal. The most likely reason for the relatively low number of
Naughton 1993, 1994) requires very accurate spike sortingcovered clusters is that the great majority of pyramidal neu-
Our major finding is that the causes of separation error can foms are silent most of the time. However, during the popula-
explained by overlapping clouds in cluster space due to ttien synchrony associated with sharp waves (Buzsaki et al.
spread of clusters representing single cells and to the similarii992; Csicsvari et al. 1999) even some of the previously silent
of clusters corresponding to different cells. Specifically, weells may discharge. Since these silent cells do not have suf-
found thatl) the Type | and Type Il errors of human operatorficient spike counts to form recognizable cluster clouds, the
typically ranged from O to 30% but could exceed 50% duringpikes they emit may be mistakenly incorporated into the
periods of synchronous population cell dischar@@seurons clusters of other neurons.
with similar amplitude profiles across channels may be dis- Although population bursts of neurons provided the most
criminated when information about the waveforms is als@bust examples for the demonstration of spike interference
utilized, 3) auto- and cross-correlograms of spikes may identibffects, the same rules also apply to any state when nearby
poor clusters but cannot always estimate confounding spikesigurons discharge together within the duration of the action
the clusters4) the most important source of error is humaipotential. In the hippocampus, such spike-spike interference
error, caused by the observer’s inability to visualize the fudlffects are relatively small because in the absence of sharp
high-dimensional cluster spac&) Using information from wave bursts neighboring pyramidal cells (place cells) only
single wires produced substantially more errors than tetrodgceptionally represent the same part of the environment and
recordings.6) Spike sorting errors may be significantly retherefore rarely fire together (Recce and O’Keefe 1989). In
duced by semi-automatic clustering. contrast, neurons in cortical columns are typically coactivated

and discharge at a high rate in response to relevant inputs
Synchronous discharge of nearby neurons increases Type (Hubel and Wiesel 1962; Mountcastle 1957). In addition, neo-
clustering error cortical n'eywork's can also become synchronized with rmlhsec-

ond precision either spontaneously (Abeles and Gerstein 1988;

The most important error of biological origin occurs due tBuzsaki and Kandel 1998) or in response to sensory inputs

the near simultaneous discharge of neurons in the vicinity @fones and Barth 1999; Kaneko et al. 1999). Our observations
the recording electrodes. This was demonstrated best by therefore indicate that separation of tetrode-recorded neocorti-
observation that both Type | and Type Il errors increaseaxl neurons with the currently available clustering methods are
several-fold when spikes occurred during sharp wave-assdikely to yield much larger Type | error rates than in the
ated population bursts of CA1 neurons. We examined twoppocampal CA1l region.
potential sources of the increased error. Hippocampal sharp
waves are associated with fast field oscillation (ripples, 10Gspixe waveform variability of single neurons contribute to
200 Hz) in the CAl pyramidal layer and an increased SYRype Il error
chrony of pyramidal cells and interneurons (Buzsaki et al.
1992). These high-frequency ripple waves are often signifi- The original motivation of the tetrode technique was that
cantly larger in amplitude than the units to be discriminatedjultiple voltage sensors can reliably locate a given neuron in
and therefore inadequate filtering may not perfectly separaigace on the basis of spike-amplitude ratios (Drake et al. 1988;
field events from the extracellularly recorded spike. Howeve@ray et al. 1995; McNaughton et al. 1983; Recce and O’Keefe
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1989). However, research on the biophysical properties afid O’Keefe 1989). Nevertheless several investigators use
neurons indicates that neurons are not point sources of exgingle wires for unit isolation mostly because of the conve-
cellular currents underlying the action potential. Both the pefiience of the fabrication and implantation of single wires.
somatic region and the dendritic compartments actively supstimation of optimal spike separation errors for single sites of
port both the generation and propagation of action potentiggr tetrode data showed great variability depending on which
(Calvin and Hartline 1977; Kamondi et al. 1998; Llinas andite was being used. However, even the best channels still
Nicholson 1971; Regehr et al. 1993; Stuart et al. 1997). Benowed relatively poor performance with typical error rates

cause spike activity of pyramidal cells can be recorded several, oximately twice those of the full tetrode. We therefore
hundred micrometers from their somata (Buzsaki and KanG&nfirm that spike separation is significantly more effective

19.98; Buzsaki et al. 1996; Henze et al. ZOQO)’ the extracellu hen multiple sites are used for unit recording (Drake et al.
spike recorded by the extracellular recording electrode rep 388; McNaughton et al. 1983; Nadasdy et al. 1998: Recce and
sents a summed activity of somatic and dendritic currergKe’efe 1989) ’ ' ’ '

(Nadasdy et al. 1998). Since the amplitude and waveform of '

dendritic action potentials vary substantially as a function of

the presynaptic network activity (Kamondi et al. 1998), theiow may spike separation be further improved?

extracellular waveforms also vary along the somadendritic

axis, modulated by ongoing network behavior. Complex-spike Use of the full tetrode channels and a semi-automatic clus-
bursts of pyramidal cells (Ranck 1973) represent perhaps teeing process improved the performance from the level
most extreme degree of extracellular spike amplitude aa@hieved by human operators to the theoretical estimate of
waveform variation. Our findings revealed that these faCtO@%timum performance provided by the BEER measure. Can
can often lead to elongated clusters, which also increases &ige separation performance be further improved?
probability of cluster overlap with spikes emitted by other Tnree directions for future spike separation methods are
neurons. Because units with spikes of various shapes and sizgsih emphasizing. First, improvement of the recording hard-
may be inadvertently grouped into different clusters, the numz, e may enhance signal-to-noise ratios and separability of
ber of spikes emitted by a single neuron may be substantigliyii sjlicon technology-based electrodes are especially prom-
underestimated (omission error). ising because they can be standardized and optimized for
various neuron types without increasing tissue damage (Na-
gdasdy et al. 1998).

Examination of the errors made by human operators indi-Second, although semi-automatic clustering can achieve
cated that their performance was below the theoretical opttose to the theoretical optimum performance for a given set of
mum and that the most likely cause of this sub-optimal pefeature vectors, it may be possible to lower error rates further
formance was an inability to visualize the high-dimensiongly improving the feature vectors themselves. Two stages are
cluster space. This was confirmed by experiments with a sefiyolved in going from raw traces to feature vectors: spike
automatic clustering process, which achieved error rates cloggfection and feature extraction. We have seen here that use of
to the theoretical optimum. _ __waveshape information (in this case by principal component

_The semi-automatic process consisted of an automatic clggsy sy leads to improved performance over simple peak-to-
sification program, followed by examination and reassignme égatk amplitude. However, further improvements in spike de-

Improved error rates achieved by semi-automatic clusterin

by a human operator. While the program’s parameters nee X .
very little adjustment, it had a tendency to overcluster the da lon and feature extraction may lead to more focused clus-
gfs and thus lower error rates.

this tendency was expressed by dividing the cloud correspo ; . . . .
ing to a sin{;le cell Fi)nto seve)r/al clustgers, which was rﬁ)wo tTh'rd! the sgml-a.lutomat'lc clustering process descrlbgd
noticeable for bursting cells. This problem was rectified by &€re still requires inspection by a human operator. This
human operator who manually merged clusters correspondi@§€s time, albeit less time than manual clustering, and
to the same cell based on cluster proximity, amplitude ratidgises the possibility of subjective bias. Ideally a fully
and cross-correlograms. In addition, the program would occ@ltomatic clustering system would produce an output cor-
sionally produce a single cluster combining spikes from twigsponding to single cells without the need for user inter-
cells. This again may be corrected by manual interventiovgntion. The AutoClass software used in this paper was
including examination for bimodality of clusters and subseélesigned for automatic classification in a wide range of
guent examination of the cross-correlogram of the dividetbmains and made no use of neuroscience knowledge, such
cluster. as refractory periods and the nature of complex-spike bursts.
The usual arguments advanced so far in favor of automalibe incorporation of such knowledge (Fee et al. 1996;
spike sorting have been that it is considerably faster than tBahani 1999; K. Zhang, personal communication) holds out
manual method and free from the subjective bias and expeibpe for more reliable, fully automatic spike sorting.
ence level of the operator. We now can add another argument:

that it may lower error rates, beyond even those of the moer thank R. Bruno f forming clust vsis and drawi "
experienced operator. e than . bruno for perrorming cluster analysis an rawing our atten-

tion to the AutoClass program, M. Recce and P. Mitra for suggestions with
L . . data analysis and comments on the manuscript, C. King, G. Dragoi, and X.
Superiority of tetrodes over single wires Leinekugel for performing cluster analysis, and J. Hetke and K. Wise for
. . . . . . supplying silicon probes. The data used in this paper are available on request
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