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Abstract
We present a novel analytical approach for studying neural encoding. As a
first step we model a neural sensory system as a communication channel.
Using the method of typical sequence in this context, we show that a
coding scheme is an almost bijective relation between equivalence classes of
stimulus/response pairs. The analysis allows a quantitative determination of the
type of information encoded in neural activity patterns and, at the same time,
identification of the code with which that information is represented. Due to the
high dimensionality of the sets involved, such a relation is extremely difficult
to quantify. To circumvent this problem, and to use whatever limited data set is
available most efficiently, we use another technique from information theory—
quantization. We quantize the neural responses to a reproduction set of small
finite size. Among many possible quantizations, we choose one which preserves
as much of the informativeness of the original stimulus/response relation as
possible, through the use of an information-based distortion function. This
method allows us to study coarse but highly informative approximations of a
coding scheme model, and then to refine them automatically when more data
become available.

1. Introduction

One of the steps toward understanding the neural basis of an animal’s behaviour is
characterizing the code with which its nervous system represents information. All
computations underlying an animal’s behavioural decisions are carried out within the context
of this code. A determination of the neural coding schemes is an extremely important goal,
due not only to our interest in the nature of the code itself, but also to the constraints that this
knowledge places on the development of theories for the biophysical mechanisms underlying
neural computation [19].
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Deciphering the neural code of a sensory system is often reduced to a few interconnected
tasks. One task is to determine the correspondence between neural activity and sensory signals.
That task can be reduced further to two interrelated problems: determining the specific
stimulus parameters or features encoded in the neural ensemble activity and determining
the nature of the neural symbols with which that information is encoded. An ancillary
task is to define quantitative measures of significance with which the sensory information
and associated neural symbols are correlated. Considerable progress has been made by
approaching these tasks as independent problems. Approaches that we and others have
taken include stimulus reconstruction [26, 35] and the use of impoverished stimulus sets to
characterize stimulus/response properties [15,36]. Recent work also provided direct estimates
of information-theoretic measures of correlations between stimulus and response [5,33], while
completely bypassing the problem of identifying the stimulus. However, independent treatment
of these interconnected tasks often introduces multiple assumptions that prevent their complete
solution. Some of these approaches start with an assumption of the relevant codewords (e.g.
a single spike in the first-order stimulus reconstruction method, or the mean spike rate over a
defined interval) and proceed by calculating the expected stimulus features that are correlated
with these codewords. Other approaches make an assumption about the relevant stimulus
features (e.g. moving bars and gratings in the investigation of parts of the visual cortex) and
proceed to identify the pattern of spikes that follow the presentation of these features. We have
developed an analytical approach that takes all three tasks into consideration simultaneously.
Specifically, the aim of this approach is to allow a quantitative determination of the type of
information encoded in neural activity patterns and, at the same time, identify the code with
which that information is represented.

There are two specific goals of this paper. The first is to formulate a model of a neural
sensory system as a communication channel (section 2). In this context we show that a
coding scheme consists of classes of stimulus/response pairs which form a structure akin to
a dictionary: each class consists of a stimulus set and a response set, which are synonymous.
The classes themselves are almost independent, with few intersecting members. The second
goal is to design a method for discovering this dictionary-like structure (section 3). To do
this, we quantize the neural responses to a reproduction set of small finite size. Among many
possible quantizations, we choose one which preserves as much of the informativeness of
the original stimulus/response relation as possible, through the use of an information-based
distortion function.

We start with the observation that the neural code must satisfy two conflicting demands.
On one hand, the organism must recognize the same natural object as identical in repeated
exposures. In this sense, the signal processing operations of the organism need to be
deterministic at this ‘behavioural’ level. On the other hand, the neural coding scheme must
deal with projections of the sensory environment to a smaller stimulus space and uncertainties
introduced by external and internal noise sources. Therefore, the neural signal processing must,
by necessity, be stochastic on a finer scale. In this light, the functional issues that confront
the early stages of any biological sensory system are very similar to the issues encountered by
communication engineers in their work of transmitting messages across noisy media.

With this in mind we model the input/output relationship present in a biological sensory
system as a communication channel [31]. Although this approach has been suggested
before [2,3], to our knowledge all the properties that information theory assigns to this object
have not been completely appreciated in the neural research literature. The principal method
that we present is based on the identification of jointly typical sequences ([6, appendix A.4])
in the stimulus/response sets. Joint typicality is a rigorously defined concept used extensively
in information theory [6] and described in more detail in section 2.3. We use this technique
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to elucidate the structure of a neural stimulus/response relation. Although our coding model
is stochastic, we demonstrate how an almost deterministic relation emerges naturally on the
level of clusters of stimulus/response pairs.

To investigate such a model we consider the possibility that temporal patterns of spikes
across a small ensemble of cells are the basic elements of information transmission in such
system. Due to the high dimensionality of the sets involved, such a relation is extremely
difficult to quantify [17, 33, 38]. To circumvent this problem, and to use whatever limited
data set is available most efficiently, we quantize the neural responses to a reproduction set of
small finite size (section 3.1). Quantization is another standard technique from information
theory ([6, 14], appendix A.5.2). By quantizing to a reproduction space, the size of which is
sufficiently small, we can assure that the data size requirements are much diminished.

Among many possible quantizations, we choose one which preserves as much of the
informativeness of the original stimulus/response relation as possible, through the use of an
information-based distortion function (section 3.2). The relationship between stimulus and
reproduction will be an approximation of the coding scheme described above. This method
allows us to study coarse but highly informative models of a coding scheme, and then to
automatically refine them when more data become available. Ultimately, a simple description
of the stimulus/response relation can be recovered (section 3.4).

2. Neural information processing

2.1. Neural systems as communication channels

Communication channels characterize a relation between two random variables: an input and
an output. For neural systems, the output space is usually the set of activities of a group of
neurons. The input space can be sensory stimuli from the environment or the set of activities
of another group of neurons. We would like to recover the correspondence between stimuli
and responses, which we call a coding scheme [34]. For any problem that has inputs and
outputs, a coding scheme is a map (correspondence) from the input space to the output space.
A decoding scheme is the inverse map. In general, both maps can be probabilistic and many
to one. We will provide a more precise definition, which describes the situation when they can
be considered almost deterministic and almost bijective.

The early stages of neural sensory processing encode information about sensory stimuli
into a representation that is common to the whole nervous system. We will consider this
encoding process within a probabilistic framework [3,8,18,26]: the signal X is produced by a
source with a probability p(x). For example this may be a sensory stimulus from the animal’s
environment, or the activity of a set of neurons. The encoder q(y|x) is a stochastic map from
one stochastic signal to another. This will model the operations of a neuronal layer. The output
signal Y is produced by q with probability p(y). This is the temporal pattern of activity across
a set of cells. This description is naturally cast in the formalism of information theory. If we
consider a neuron or a group of neurons as a communication channel, we can apply the theory
almost directly for insights into the operation of a neural sensory system, including a detailed
picture of the correspondence between sensory stimuli and their neural representations.

Our basic assumption is that sensory stimuli are represented by patterns of spikes in one
or several neurons. The number of neurons comprising an information channel, the temporal
extent of the patterns and temporal precision of spikes are parameters which can be determined
from data [9]. We can formulate hypotheses about particular coding schemes by fixing the
values of these parameters. Our initial assumption is that all distinct patterns of fixed length
and precision may be important. Some ideas about information transmission in the presence of



444 A G Dimitrov and J P Miller

noise allow us to group patterns into larger classes and consider coding with these equivalence
classes. This scheme is general, and encompasses most of the existing hypotheses about the
nature of neural coding as special cases. Once equivalence classes are uncovered, they can be
further analysed with regard to formal rules and physiological mechanisms which can describe
them more succinctly. In certain cases these may turn out to be one of the above commonly
considered coding schemes.

Sensory stimuli and their neural representation can be quite complex. Information theory
suggests ways for dealing with this complexity by extracting the essential parts of the signal
while maintaining most of its information content. To achieve this, we use the method of typical
sequences. What follows is an informal discussion of their properties in relation to coding and
our model of a sensory system. Many terms here are preceded by ‘almost’, ‘nearly’, ‘close to’
etc, which describe events that occur with high probability. The following three sections (2.2–
2.4) discuss standard topics from information theory. See appendix A.3 for formal definitions
and properties and [6] for a more complete treatment.

2.2. Typical sequences

The basic concepts of information theory are the entropy H(X) and the mutual information
I (X, Y ) of random sources (X, Y ) ( [6, 31], appendix A.2). When used in the analysis of
communication systems, they have very specific meaning [31]. Consider a random source
X. All the sequences of length n form the nth extension Xn of X. Xn can be described well
by using about 2nH(X) distinct messages. These are the typical sequences of Xn. Typical
sequences (events) comprise the typical set and are nearly equiprobable. The typical set of
X has probability near unity, and the number of elements in it is nearly 2nH(X) (theorem
appendix A.2). We can summarize this by saying ‘Almost all events are almost equally
surprising’ [6]. This enables us to divide the set of all sequences into two sets—the typical set,
where the entropy of a sequence is close to the entropy of the whole set, and the nontypical set,
which contains the rest of the sequences. Any property that is proved for the typical sequences
will be true with high probability and will determine the average behaviour of a large sample
of sequences. The functional property of the entropy H(X) here is to give the approximate
size of the ‘relevant’ set of events in Xn.

To illustrate, consider x ∈ X ≡ {0, 1}, p(x) = [p, q], p + q = 1 (the Bernoulli source).
An example of a particular sequence of length 12 is (010001011010). The n-typical sequences
are all the sequences of length n with approximately np zeros and nq ones. Notice that, despite
its simplicity, this process can be used as a model of neural activity, where the presence of a spike
is marked by one and its absence by zero. Spikes in a sequence are usually not independent of
each other [22], so this should be considered at most a zeroth-order approximation.

Typical sequences are applicable to continuous random variables as well. Let x ∈ N (0, σ )

(x is drawn from a normally distributed random variable with mean zero and variance σ 2).
An n-sequence of these variables (x1, . . . , xn) ≡ Xn ∈ N(0n, σ In) is obviously drawn from
an n-dimensional normal distribution. The n-typical sequences here are all Xn : ‖Xn‖2 �√
n(σ 2 + ε), that is all the points contained in an n-ball with the given radius. This property

can be extended to general normal distributions, with a full covariance matrix, in which case
the typical set lies within the n-ellipsoid determined by the principal directions and eigenvalues
of the covariance matrix.
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Figure 1. Neural sensory systems as information channels.

2.3. Jointly typical sequences

When analysing information channels, we deal with two sets of random sequences—input and
output. In this case it is necessary to consider the combined behaviour of the pair (X, Y ). We
approach this by using jointly typical sequences ( [6], appendix A.4). For a pair of sources
(X, Y ), there are about 2nH(X,Y ) jointly typical sequences of pairs (typical in the product space
(Xn, Y n)). As with typical sequences, all the elements are nearly equiprobable and the set
has probability close to unity (appendix A.4). The correspondence between input and output
sequences is not necessarily one to one, due to noise or mismatch between the stimulus and
response sizes.

Not all pairs of typical xn and typical yn are also jointly typical. For each typical sequence
in Xn, there are about 2nH(Y |X) sequences in Yn which are jointly typical with it, and vice versa.
The probability that a randomly chosen pair is jointly typical is about 2−nI (X;Y ) [6]. Hence,
for a fixed yn, we can consider about 2nI (X;Y ) xn before we are likely to come across a jointly
typical pair. This suggests there are about 2nI (X;Y ) distinguishable messages (codewords) in
Xn that can be communicated through Yn (figure 2). Thus the knowledge of I (X;Y ) places
important bounds on the performance of any coding scheme.

The structure of a coding scheme in this framework can be seen intuitively by the following
argument [6].

For each (typical) input n-sequence xn, there are about 2nH(Y |X) possible Y (jointly
typical) sequences, all of which are approximately equally likely. The total number
of possible (typical) Y sequences is about 2nH(Y ). In order to insure that no two X

sequences produce the same Y output sequence, we need to divide the output set into
chunks of size about 2nH(Y |X), corresponding to the different input X sequences. The
total number of disjoint sets after this procedure is about 2n(H(Y )−H(Y |X)) = 2nI (X;Y ).
Hence we can transmit about 2nI (X;Y ) distinguishable X sequences of length n.

2.4. Coding and decoding with jointly typical sequences

Let the jointly typical pairs (xn, yn) represent related stimulus/response signals. Since there are
2nI (X;Y ) distinguishable codewords and 2nH(X,Y ) signals, some of the signals represent the same
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Figure 2. The structure of the jointly typical set. There are about 2nH(X) typical stimulus (x)
sequences and 2nH(Y ) typical response (y) sequences but only 2nH(X,Y ) jointly typical sequences.
This suggests there are about 2nI (X;Y ) distinguishable equivalence classes Ci of stimulus/response
pairs. Each class has about 2nH(X|Y ) input sequences and 2nH(Y |X) output sequences. The number
of stimulus/response pairs in each class is about |Ci | ≈ 2n(H(Y |X)+H(X|Y )).

codeword. Signals representing the same codewords can be combined in equivalence classes,
which we call codeword classes. The codeword classes will represent the distinguishable
messages that can be transmitted in this communication system. Within each class, a stimulus
in Xn invokes a corresponding jointly typical response in Yn with high probability (about
1 − 2−nI (X;Y )).

We define the codebook of this system as the map F : xn → yn. The codebook is
stochastic on individual elements, so it is represented through the association probabilities
q(yn|xn). However, when considered on codeword classes, the map is almost bijective. That
is, with probability close to unity, elements of Yn from one codeword class are associated with
elements of Xn in the same codeword class. We shall decode an output yn as (any of) the
inputs that belong to the same codeword class. Similarly, we shall consider the representation
of an input xn to be any of the outputs in the same codeword class. Stimuli from the same
equivalence class are considered indistinguishable from each other, as are responses from the
same class. If the stimulus or response has additional structure (e.g. resides in a metric space
with a natural distance), the classes can be represented more succinctly using constraints from
within this structure (e.g. by an exemplar with a minimum reconstruction error according to
this distance).

An example of coding with jointly typical sequences. We shall use the binary source
X : x ∈ {0, 1}, p(x) = [r, 1 − r] and sequences from its finite extensions Xn. Here
H(p) = −r log r−(1−r) log(1−r). The communication system we consider in this example
is the binary symmetric channel (BSC) (figure 3(a)). BSC is a model of a communication
system with noise. The input and output are binary digits (zero or one; x ∈ Z2). The
channel is described by the transition probabilities Pr(a → a) = p for correct transmittal and
Pr(a → b) = q for an error (flipped bit); p + q = 1, a, b ∈ [0, 1].

The BSC has a nice representation in terms of typical sequences. It can be considered as
a random binary source with probability measure [p, q] which generates sequences of ones
and zeros. These sequences are then summed modulo 2 (xor-ed) with the original source to
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Figure 3. (a) The BSC. (b) A three-dimensional binary space X3 and a particular coding scheme
that allows the correction of one flipped bit. In this example, the codewords are 000 and 111 and the
arrows mark the decoding process. Any pair of opposing vertices provides the same functionality.

produce the output. From the theorems on typicality (appendix A.3), the channel will typically
produce sequences of nq ones (errors) and np zeros (correct transmission). There are about
2nH(p) possible errors per transmitted input sequence; i.e., H(Yn|Xn) ≈ nH(p).

A natural error measure for the BSC is the Hamming distance, which returns the number
of bits in which two sequences differ. Figure 3(b) illustrates an example in X3 which can
correct one error in a block of three. The two distinct sets of arrows denote the two binary balls
of unit radius in which this code can correct an error. We can use the two opposing vertices
as codewords to transmit one bit of information. There are two equivalence classes with four
elements each. Each element is decoded as the centre of the binary ball, with Hamming
distance zero from the original codeword.

For Xn, let us consider only the uniform input distribution p(x) = [1/2, 1/2]. Then all
sequences are typical. There are 2nH(X) = 2n of them. BSC with error probability q will
produce about 2nH(q) typical sequences of about nq flips. Thus each possible sequence in X

will be received as one of about 2nH(q) possible neighbours in Y . In order to transmit with small
probability of error we need to pick as codewords sequences in X which are at least nH(q)

bits apart in Hamming distance. There are about 2n/2nH(q) = 2n(1−H(q)) such sequences.

2.5. Comments on the continuous case

The picture that we present is essentially one of discrete finite sets and relations between them.
Some readers may raise the issue of how this whole scheme would work when both input and
output processes are continuous, in space and/or time. We argue that most such cases can be
handled by the current scheme. First, notice that any continuous coding scheme will contain
uncertainties due to channel noise and measurement error at the receptor level. The scheme can
be approximated to an arbitrary level of detail by a discrete coding scheme through the process
of quantization (appendix A.5.2), which comes with another set of uncertainties (quantization
noise). The two schemes will be indistinguishable in practice if their functionalities lie within
each others’ error bars. If they are distinguishable, there will be an experiment that can resolve
the issue.

Even if we insist on considering continuous stimuli and responses, there are some
arguments which again point to the benefit of discrete coding schemes. In the case of object
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and feature recognition, it was noted [24] that the continuity of stimuli is usually due to
symmetries in the signal, which do not contribute to (and even interfere with) the recognition
of features. The solution suggested in [24] is to pre-process the stimulus to remove as much
of the continuous symmetries as possible and then to continue with the recognition algorithm.

Another argument comes from recent work in rate distortion theory. It was shown [27] that
the optimal reproduction space of a continuous source is continuous only in a few special cases
(e.g. if the source is Gaussian). In any other case, compressing and transmitting a continuous
source is done best through discrete representatives.

We do not argue that this analytical approach covers every conceivable case. Our intention
is to illustrate how coding with discrete sets can be used in a much wider context than may
initially be perceived.

2.6. Neural coding with jointly typical sequences

The picture of coding and decoding with jointly typical sequences gives us a framework
within which to think about the problem of neural coding and decoding. The description
above (figure 2) is an idealization used to prove properties of optimal communication coding
schemes, but the basic structure is valid for any coding scheme.

• A bijective or almost bijective coding scheme is needed for robust decoding, otherwise
the animals will be confusing distinct stimuli.

• In any real system, there is noise which compromises the amount of information that can
be represented. To achieve robustness, some of the capabilities of the system must be
devoted to combating noise.

• Noise reduction can be achieved by combining signals that are likely to be confused into
equivalence classes.

• A coding scheme that is almost bijective on equivalence classes will present a consistent
representation of a sensory modality.

Unlike the idealized case of coding with jointly typical sequences, the codeword classes
in a neural system need not be similar in size. In our model they still have the property of being
almost self-consistent. Stimuli belonging to a certain codeword class will invoke a response
within the same codeword class with high probability and only rarely produce a response
outside this codeword class (in another class or nontypical). In such a case the stimulus will
be considered incorrectly represented.

It should be noted that in the idealized picture there are many coding schemes which are
optimal in the sense that the error rate asymptotically approaches zero [6]. This can be achieved
by splitting the input and output into clusters of size appropriate for the channel (H(X|Y ) for
the input, H(Y |X) for the output), and then connecting them at random. When applied to the
neural case, this means that a neural coding scheme for similar sensory modalities could be
unique for species or even individuals.

Many neural coding schemes currently in use can be seen as special cases of the general
coding scheme we describe here. For example, in rate coding schemes [1], all sequences in a
short interval that have the same number of spikes are considered to be in the same equivalence
class. The codeword classes are labelled by the number of spikes. All stimuli that precede a
sequence in the same codeword class are considered jointly typical with it and hence decoded
as being represented by this class. There is no guarantee that the classes are nonoverlapping
or that the decoding error is small. Similarly, in population vector coding schemes [12, 29]
the output sequences are assigned to classes based on the value of a linear functional of the
number of spikes in each neuron (population mean). Decoding is done as before and labelled
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by the class identity, which is interpreted in [12] as the direction of planned hand movement.
A spike latency code is an example of a continuous coding scheme. It fits in this formalism
through the process of quantization (section 2.5). Classes are determined by the mean latency
and jitter (variance) of the spike timing. The classes may be partially overlapping. A stimulus
feature is decoded as in the rate code case, based on the latency class into which a spike falls.

Given this model of a neural subsystem, our task is to recover the codebook. There are
two basic ways to approach this. Since the codebook is almost deterministic on equivalence
classes, we can approximate it with a deterministic map. Then each equivalence class will
have identified fixed members. All errors will be caused by disregarding certain regions of the
event space. A more general approach is to represent F by the conditional probability of class
membership q(y|x) in which case we explicitly model the probability of misclassification, but
lose some of the simplicity offered by jointly typical sequences. We shall use both approaches
as warranted.

3. Finding the codebook

With communication systems, the usual use of information theory is to design a coding scheme
given the structure of the communication channel. Our application differs, since now we are
analysing a neural coding scheme already implemented within an animal’s nervous system.
Our goal is to uncover the structure described so far (section 2.4, figure 2) based on observations
of the stimulus and response properties of the neural system under investigation.

3.1. Quantizing the response

As we mentioned before, the information quantities H and I depend only on the underlying
probability function and not on the structure of the event space. This allows us to estimate
them in cases where more traditional statistical measures (e.g. variance, correlations etc)
simply do not exist. There is a drawback, though, since now we have to model the necessary
probabilities, or else use large numbers of data to estimate the probabilities nonparametrically.
The problem is compounded by several factors. Recent research suggests that nervous systems
represent sensory stimuli by using relatively long temporal windows (tens to a few hundred
ms in diverse preparations) [9, 17, 23, 25] and through the coordinated activity of multiple
neurons [17, 21, 30, 39]. Unlike research which is geared towards finding better unbiased
estimates of H and I [33, 38], our goal is to recover the complete coding scheme used in a
sensory system. As pointed out in [17], the number of data points needed for nonparametric
analysis of neural responses which are correlated across long time periods (length T ) and
multiple neurons (K) grows exponentially with T and K . It is conceivable that for some
systems the required data recording time may well exceed the expected lifespan of the system.

To resolve this issue we choose to sacrifice some detail in the description of the coding
scheme in order to obtain robust estimates of a coarser description. This can be achieved
through quantization (appendix A.5.2, [6, 14]) of the neural representation Y into a coarser
representation in a smaller event space YN . YN is referred to as the reproduction of Y . By
controlling the size of the reproduction, we ensure that the data requirements to describe such
a relation are much diminished. Instead of exponentially growing with T and K , now the
number of needed data is proportional to N , the size of the reproduction, which is chosen by
the researcher to be small. Most of the results in this section are valid for the general case
when the sources are continuous, ergodic random variables [14]. However, the formulation
for the most general case requires special attention to details. For clarity of the presentation,
we shall assume that all random variables are finite (though possibly large) and discrete.
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Quantizers are maps from one probability space to another. They can be deterministic
(functions) or stochastic (given through a conditional probability) (appendix A.5.2). The size
of the reproduction space is smaller than the size of the quantized space. We shall consider the
most general case of a stochastic quantizer q(yN |y)—the probability of a response y belonging
to an abstract class yN . A deterministic quantizer f : Y → YN is a special case in which q takes
values zero or one only. In both cases, stimulus, response and reproduction form a Markov
chain X → Y → YN . The quality of a quantization is characterized by a distortion function
(appendix A.5.3). We shall look for a minimum distortion quantization using an information
distortion function and discuss its relationship to the codebook estimation problem.

The quantization idea has been used implicitly in neuroscience for some time now. For
example, the rate coding scheme effectively uses a deterministic quantizer to assign the neural
response to classes based on the number of spikes that each pattern has. The metric space
approach [40] uses an explicit cost (distortion) function to make different sequences identical
if their difference according to the cost function is below a certain threshold. The cost function
and identification threshold induce a deterministic quantization of the input space to a smaller
output space. We decided to state the problem explicitly in the language of information theory,
so that we could use the powerful methods developed in this context for putting all these ideas
in a unified framework.

3.2. A distortion measure based on the mutual information

In engineering applications, the distortion function is usually chosen in a fairly arbitrary
fashion [6, 13], and is the one that introduces structures in the original space, to be preserved
by the quantization. We can avoid this arbitrariness, since we expect that the neural system is
already reflecting pertinent structures of the sensory stimuli that we would like to preserve in
the reproduction. Thus our choice of distortion function is determined by the informativeness
of the quantization. The mutual information I (X;Y ) tells us how many different states on
average can be distinguished in X by observing Y . If we quantize Y to YN (a reproduction
with N elements), we can estimate I (X;YN)—the mutual information between X and the
reproduction YN . Our information preservation criterion will then require that we choose a
quantizer that preserves as much of the mutual information as possible, i.e. choose the quantizer
q(YN |Y ) which minimizes the difference

DI(Y, YN) = I (X;Y ) − I (X;YN) (1)

(note that DI � 0). We use the functional DI as a measure of the average distortion of
the quality of a quantization. It can be interpreted as an information distortion measure
(appendix A.5.3, appendix B), hence the symbol DI . The only term that depends on the
quantization is I (X;YN) so we can reformulate the problem as the maximization of the effective
functional Deff = I (X;YN). A closely related method using this cost function was recently
presented in [37].

For several reasons it is useful to consider the full functional. First, we may choose to
quantize the stimulus, in which case the quantizer is q(xN |x), or quantize both stimulus and
response, in which case there are two quantizers. In these versions other parts of the information
distortion are relevant. A second reason is that the average distortion can be rewritten as the
expectation of a pointwise distortion function of a rather interesting form. Using the definition
of the mutual information and the Markov relation X → Y → YN between the spaces, we can
express DI (appendix B) as the expectation

DI = Ep(y,yN )d(y, yN) (2)

where
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d(y, yN) ≡ KL(q(x|y)||q(x|yN)) (3)

is the Kullback–Leibler (KL) directed divergence of the input stimulus conditioned on a
response y relative to the stimulus conditioned on a reproduction yN . Intuitively, this measures
how similar the stimulus partition induced by the quantization is to the partition induced by
the sensory system. This expression is very appealing from a theoretical standpoint, due to
various properties of the KL divergence. For example it allows us to describe the cases where
the solution to the quantization problem will be an exact representation of the coding scheme.
Indeed, because of the properties of KL [6], a reproduction with zero distortion is achieved if
and only if q(x|y) = q(x|yN) almost everywhere, which is exactly the case with the coding
scheme described in section 2.4.

3.3. Implementations

Using a quantization (deterministic or stochastic) of the output space (appendix A.5.2, [14])
allows us to control the exponential growth of required data. With this approach we estimate
a quantity which is known to be a lower bound of the actual mutual information. We obtain
a biased estimate but control the precision with which it can be estimated. Theorems from
quantization theory (appendix A.5.2, [14]) insure that estimates of the quantized information
quantities are always bounded by the original quantities and that a refinement of the quantization
does not lower these estimates. In such an environment it is beneficial to fix the coarseness of
the quantization (the size of the reproduction, N ) and look for a quantization that minimizes
the information distortion measure DI = I (X;Y ) − I (X;YN) described previously.

3.3.1. Maximum entropy with nonlinear information distortion constraint. The problem
of optimal quantization was formulated for a class of linear distortion functions [28] as a
maximum-entropy problem [16]. We cannot use this analysis directly, since in our case
the distortion function depends nonlinearly on the quantizer. However, we can still use the
maximum-entropy formulation. The reasoning behind this is that, among all quantizers that
satisfy a given set of constraints, the maximum-entropy quantizer does not implicitly introduce
further restrictions in the problem. In this framework, the minimum-distortion problem is posed
as a maximum-quantization-entropy problem with a distortion constraint:

max
q(yN |y)

H(YN |Y ) constrained by

DI(q(yN |y)) � Do and∑
yN

q(yN |y) = 1 ∀y ∈ Y.

(4)

This is an ordinary constrained optimization problem that can be solved numerically with
standard optimization tools. The cost function H(YN |Y ) is concave in q(yN |y), and the
probability constraints

∑
yN

q(yN |y) = 1 are linear in q(yN |y) [6]. The constraint DI is also
concave in q(yN |y) (theorem appendix B.1), which makes the whole problem one of concave
maximization.

The problem with this formulation is that it relies on knowing DI , which depends on the
mutual information between X and Y . We can easily avoid the need for that by using the
effective distortion Deff ≡ I (X;YN). In this case, the optimization problem is

max
q(yN |y)

H(YN |Y ) constrained by

Deff ≡ I (q(yN |y)) � Io and∑
yN

q(yN |y) = 1 ∀y ∈ Y.

(5)
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The solution to the optimization problem (5) depends on a single parameter Io, which
can be interpreted as the informativeness of the quantization. If Io � 0, the distortion
constraint is always satisfied and we obtain only the unconstrained maximum entropy solution
q(yN |y) = 1/N for all pairs (y, yN). For Io � 0 the distortion constraint becomes active
and the uniform quantizer is no longer a solution to the optimization problem. Because of the
convexity of Deff , the optimal solution will lie on the boundary of the constraint and thus carry
I (X;YN) = Io bits of information. Thus this formulation has a nice intuitive interpretation:
‘find the maximum-entropy quantizer of Y which carries at least Io bits of information about
X’.

We can continue pushing Io up for more informative solutions (with lower distortion) until
we reach a point where the problem has no solutions. Imax

o at this point is the best lower bound
of I (X;Y ) for the N -element reproduction. Since the solution is continuous with respect to
Io, values near Imax

o are also good lower bounds of I (X;Y ). By choosing one of the optimal
quantizers near Imax

o , we can achieve the minimum distortion quantization.

3.3.2. Maximum cost with linear probability constraint. A standard approach to constrained
optimization problems is through the use of Lagrange multipliers. The system (4) can be
solved as the unconstrained optimization of

max
q(yN |y)

(
H(YN |Y ) − βDI (q(yN |y)) +

∑
y

λy

∑
yN

q(yN |y)
)
.

The solution depends on the parameters (β, {λy}) which can be found from the constraints

DI(q(yN |y)) � Do∑
yN

q(yN |y) = 1 ∀y ∈ Y.

Since β is a function of Do, which is a free parameter, we can discard Do and reformulate the
optimization problem as finding the maximum of the cost function

max
q(yN |y)

F (q(yN |y)) ≡ max
q(yN |y)

(
H(YN |Y ) − βDI (q(yN |y)))

constrained by∑
yN

q(yN |y) = 1 ∀y ∈ Y. (6)

As in equation (5), we shall continue the discussion using the effective distortion Deff . In this
case,

max
q(yN |y)

F (q(yN |y)) ≡ max
q(yN |y)

(
H(YN |Y ) + βDeff(q(yN |y)))

constrained by∑
yN

q(yN |y) = 1 ∀y ∈ Y. (7)

Even though this formulation is identical to (4), by transferring the nonlinear constraint in the
cost function we can analyse the problem further. Following [28], we consider the behaviour of
the cost function F at two limiting cases of β. When β → 0, F → H(YN |Y ) and the optimal
solution is the unconstrained maximum-entropy solution q(yN |y) = 1/N . This corresponds
to the case Io � 0 in section 3.3.1. At the other limit, when β → ∞, F → βDeff and
the solution to the optimization problem approaches a maximum-Deff (minimal-information-
distortion DI ) solution. This is identical to the case where Io → Imax

o above. In order to
avoid the divergence of the cost function with β, we rescale F to F/(β + 1), which has the
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same extrema, but is bounded. Intermediate values of β produce intermediate solutions which
connect the two limiting cases through a series of bifurcations. In [28] the parameter β was
given the meaning of an annealing parameter and the whole procedure for a general class of
distortion function was named ‘deterministic annealing’, drawing an analogy from a physical
annealing process.

3.3.3. An implicit solution for the optimal quantizer. Further analysis of the problem uses the
simplicity of the linear constraint in (7). Extrema of F can be found by setting its derivatives
with respect to the quantizer q(yN |y) to zero. In the subsequent steps we shall explicitly use the
assumption that all spaces are finite and discrete. The results for continuous random variables
can easily be adapted from this using analogous methods from the calculus of variations. We
use Latin indices (i, j, k) to denote members in the original spaces X, Y and Greek indices
(µ, ν, η) for elements of the reproduction YN . With this in mind (appendix B.3), we continue
to solve the Lagrange multiplier problem

0 =
(

∇
(
F +

∑
j

λj

∑
ν

q(yν |yj )

))
νk

= (∇H)νk + β(∇Deff)νk + λk

= −p(yk)
(

ln q(yν |yk) + 1
)

+ β(∇Deff)νk + λk

⇔ 0 = ln q(yν |yk) − β
(∇Deff)νk

p(yk)
− µk (8)

where µk = λk

p(yk)
− 1. Using this,

ln q(yν |yk) = β
(∇Deff)νk

p(yk)
+ µk

⇔ q(yν |yk) = eµk eβ

(
(∇Deff )νk

p(yk )

)
.

(9)

The constraint on q requires that

1 =
∑
ν

q(yν |yk)

⇒ 1 = eµk

∑
ν

eβ

(
(∇Deff )νk

p(yk )

)

⇔ eµk = 1∑
ν eβ

(
(∇Deff )νk

p(yk )

) . (10)

We can substitute this in equation (9) and obtain an implicit expression for the optimal q(yν |yk),

q(yν |yk) = eβ

(
(∇Deff )νk

p(yk )

)
∑

ν eβ

(
(∇Deff )νk

p(yk )

) . (11)

Note that ∇Deff is a function of the quantizer q(yN |y). As ∇Deff = −∇DI , the implicit
solution in terms of the information distortion DI is

q(yN |y) = e−β
∇DI
p(y)∑

yN
e−β

∇DI
p(y)

. (12)

In practice, the expression (11) can be iterated for a fixed value of β to obtain a solution
for the optimization problem, starting from a particular initial state. For small β, before the
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first bifurcation described in [28] occurs, the obvious initial condition is the uniform solution
q(yN |y) = 1/N . The solution for one value of β can be used as the initial condition for a
subsequent value of β because solutions are continuous with respect to β.

3.4. Approximations to the codebook

The optimal information distortion procedure can help us resolve the neural decoding problem
we outlined in section 2.4. Indeed, in the limit of no distortion (no information loss), an
identity transformation preserves all the structure of the output, but usually is unavailable due
to lack of data. When we quantize the neural response by fixing the size of the reproduction
to N , this bounds our estimate of Deff to be no more than logN bits. In the ideal case
max Deff ≡ max I (X;YN) ≈ logN , but in general it will be lower. On the other hand we have
a bound I (X;YN) � I (X;Y ). Since logN increases with N and I (X;Y ) is a constant, these
two independent bounds intersect for some N = Nc, at which point adding more elements
to YN does not improve the distortion measure. If I (X, YN) increases with N until N = Nc

and then levels off, we can identify the correct Nc by examining the behaviour of the expected
distortion (or, equivalently, Deff ≡ I (X;YN)) as a function of N , given sufficient data. We
take the elements of YN as the labels of the equivalence classes which we wanted to find. The
quantizer q(yN |y) gives the probability of a response y belonging to an equivalence class yN .
Rose [28] conjectured that the optimal quantizer for low distortions (high β) is deterministic (or
effectively deterministic, in the case of duplicate classes). In this case the responses associated
with class yN are YN = {y|q(yN |y) ≈ 1}. The optimal quantizer also induces a coding scheme
from X → YN by p(yN |x) = ∑

y q(yN |y)p(y|x). This is the most informative approximation
of the original relation p(x|y). It induces the quantization X → XN by associating xN with
the stimulus set XN = {x|p(yN |x) ≈ 1} of all x which correspond to the same output class
yN . The resulting relation p(yN |xN) is almost bijective and so we recover an almost complete
reproduction of the model described in section 2.3.

If there are not enough data to support a complete recovery even under the reduced data
requirements, the algorithm has to stop earlier. The criterion we use in such a case is that
the estimate of Deff does not change with N within its error bounds (obtained analytically
or by statistical re-estimation methods like bootstrap, or jack-knife). Then N < Nc and the
quantized mutual information is at most logN . We can recover at most N classes and some
of the original classes will be combined. The quantizer may also not be deterministic due to
lack of enough data to resolve uncertainties. Thus we can recover a somewhat impoverished
picture of the actual input/output relationship, which can be refined automatically as more data
become available, by increasing N and repeating the optimization procedure.

4. Results

We shall discuss the application of the method described so far to a few synthetic test
cases. Applying it to physiological data from a sensory system involves additional difficulties
associated with the estimates of DI for complex input stimuli, which are dealt with
elsewhere [10, 11].

4.1. Random clusters

We present the analysis of the probability distribution shown in figure 4(a). In this model we
assume that X represents a range of possible stimulus properties and Y represents a range of
possible spike train patterns. We have constructed four clusters of pairs in the stimulus/response
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Figure 4. (a) A joint probability for the relation between two random variables X and Y with 52
elements each. (b)–(e) The optimal quantizers q(yN |y) for different numbers of classes. These
panels represent the conditional probability q(yN |y) of a pattern y from (a) (horizontal axis)
belonging to class yN (vertical axis). White represents zero, black represents one and intermediate
values are represented by levels of grey. The behaviour of the mutual information with increasing
N can be seen in the log–linear plot (f ). The dashed curve is I (X;Y ), which is the least upper
bound of I (X;YN).

space. Each cluster corresponds to a range of responses elicited by a range of stimuli. This
model was chosen to resemble the model of coding and decoding with jointly typical sequences
(section 2.4). The mutual information between the two sequences is about 1.8 bits, which is
comparable to the mutual information conveyed by single neurons about stimulus parameters
in several unrelated biological sensory systems [9,18,25,33]. For this analysis we assume the
original relation between X and Y is known (the joint probability p(x, y) is used explicitly).

The results of the application of our approach are shown in panels (b)–(f ) of figure 4. The
grey-scale map in these, and later, representations of the quantizer depicts zero with white,
one with black and intermediate values with levels of grey. When a two-class reproduction
is forced (b), the algorithm recovers an incomplete representation. The representation is
improved for the three-class refinement (c). The next refinement (d) separates all the classes
correctly and recovers most of the mutual information. Further refinements (e) fail to split the
classes and are effectively identical to (d) (note that classes 1 and 2 in (e) are almost evenly
populated and the class membership there is close to a uniform one-half). The quantized
mutual information (f ) increases with the number of classes approximately as logN until it
recovers about 90% of the original mutual information (N = 4), at which point it levels off.

Further details of the course of the optimization procedure that lead to the optimal quantizer
in panel (d) are presented in figure 5. The behaviour of Deff as a function of the annealing
parameter β can be seen in the top panel. Snapshots of the optimal quantizers for different
values of β are presented on the bottom row (panels 1–6). We can observe the bifurcations of
the optimal solution (1–5) and the corresponding transitions of the effective distortion. The
abrupt transitions (1 → 2, 2 → 3) are similar to the ones described in [28] for a linear
distortion function. We also observe transitions (4 → 5) which appear to be smooth in Deff

even though the solution for the optimal quantizer undergoes a bifurcation.
A random permutation of the rows and columns of the joint probability in figure 4(a) has

the same channel structure. The quantization is identical to the case presented in figure 4 after
applying the inverse permutation and fully recovers the permuted classes (i.e., the quantization
is contravariant with respect to the action of the permutation group).
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Figure 5. Behaviour of Deff (top) and the optimal quantizer q(yN |y) (bottom) as a function of the
annealing parameter β.

4.2. Hamming code

There exist noise-correcting codes that transform blocks of symbols at the input to larger blocks
of binary symbols in such a way that the original block can be recovered even after some noise
perturbs the codewords [6]. For this example we are going to use a simple noise-correcting
code—the Hamming (7, 4) code (H74). It operates on binary blocks of size four and expands
each block to seven binary symbols by adding three parity bits. Blocks can be considered as
vectors in a Boolean vector space. The input x ∈ Z4

2 and the output y ∈ Z7
2 . The Hamming

code then can be described as a linear operator on these spaces:

y = HT · x
where

H =




1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1




and any addition is modulo 2. This code can detect and correct one error (a flipped bit) in a
block of seven.

The properties of H74 are known very well. We are going to use this system as another
testbed to evaluate the performance of different implementations of the algorithms described
earlier. In this case we used data sampled from the joint probability p(X, Y ) to perform all
estimates. The two variables X and Y are related in the following manner: we generated a
sequence of points from a uniform source in Z4

2 (about 104 for this example) and applied H74
to it. Two independent copies of the result were perturbed by noise, which flipped a random bit
of each sample. The two perturbed outputs are Xo and Yo. The relation between these is shown
in figure 6. There are four bits of mutual information between Xo and Yo. A permutation of
the rows and columns, which orders equivalent sequences of H74, makes the relation much
easier to comprehend (figure 7(a)). The variables X and Y are permuted versions of Xo and
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Figure 7. The joint probability between X and Y after permuting rows and columns (a) and optimal
quantizations for different number of classes (b)–(e). The behaviour of the mutual information with
increasing N can be seen in the log–linear plot (f ). The dashed curve is I (X;Y ).

Yo and have the same relation between them. As mentioned in section 4.1, any permutation of
variables leaves the information distortion invariant. Thus the results for (X, Y ) and (Xo, Yo)

are equivalent.
The results can be seen in figure 7. The reproduction classes were permuted to follow

roughly the relation 7(a). As in section 4.1, the algorithm recovers several incomplete
representations (b)–(e), each one a refinement of the previous. Refinements beyond the correct
number of clusters (16) fail to improve the distortion by much (e), and some of the classes are
effectively copies of each other (e.g. 1 and 2). The quantized mutual information (f ) increases
with the number of classes approximately as logN until it recovers almost all of the original
mutual information (N = 16), at which point it levels off.
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Figure 8. A joint probability for a linear relation between two random variables X and Y (a)
with optimal quantization (b)–(e) for different number of classes. The behaviour of the mutual
information with increasing N can be seen in (f ). The dashed curve is I (X;Y ).

4.3. Linear encoding

We also applied the algorithm to a case which, unlike the previous cases, does not have clearly
defined clusters. This model tries to simulate the process of a physical measurement where X

represents a physical system and Y is the set of possible results from a measurement. In this
example we model a linear relation between X and Y and Gaussian measurement noise, that
is

Y = kX + η

where η ∈ N (0, σ ) is drawn from a normal distribution with zero mean and variance σ 2. The
particular relation we used (figure 8(a)) contains about two bits of mutual information.

The results can be seen in figure 8. The algorithm recovers a series of representations (b)–
(e), where each quantizer is a refinement of the previous one. The reproduction classes were
permuted to roughly follow the original linear relation. There is no natural stopping point and
so the quantized mutual information I (X;YN) approaches the original mutual information
I (X;Y ) gradually. This is in contrast to the previous two cases, where the rate of change of
I (X;YN) abruptly decreased after some N .

The course of the bifurcations here also differs from the previous cases (figure 9). Again,
the reproduction classes were permuted to roughly follow the original linear relation. There
are no obvious abrupt transitions and the uncertainty of the quantizer is resolved smoothly
with β.

5. Conclusions and discussion

This paper has two goals. The first goal is to formulate a precise model of an early stage of
a sensory system as a communication channel, and describe the properties of this model. In
general, a communication channel is fully described by the conditional probability of response
given a stimulus. Using ideas from information theory on optimal information transmission in
the presence of noise, and the method of jointly typical sequences, we have demonstrated the
existence of equivalence classes of stimulus/response pairs, which we have called codeword
classes. A coding scheme in this system can be described by an almost deterministic map
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Figure 9. Behaviour of Deff (top) and the optimal quantizer q(yN |y) (bottom) as a function of the
annealing parameter for the linear encoding case.

when restricted to the codeword classes. The number of codeword classes is related to the
mutual information I (X;Y ) between stimulus and response.

The second goal of this paper is to provide a method for recovering the structure of
such a model from observations. Characterizing the relation between individual elements in
the stimulus and response spaces has been shown to require large numbers of data points,
increasing exponentially with the length of spike sequences (T ) and the number of neurons
(N) considered. We choose to recover an impoverished description of the coding scheme
by quantizing the responses to a reproduction set of a few elements. To assess the quality
of the reproduction, we define the information distortion DI = I (X;Y ) − I (X;YN), which
measures how much information is lost in the quantization process. For a fixed reproduction
size N we pose the optimization problem of finding the quantization with smallest distortion,
as the one which preserves most of the information present in the original relation between X

and Y . Refining the reproduction by increasing N was shown to decrease the distortion. We
demonstrate empirically on a set of synthetic problems that, if the original relation contains
almost disjoint clusters, a sufficiently fine optimal quantization recovers them completely. If
the quantization is too coarse, then some of the clusters will be combined, but in such a way
that a large fraction of the original information is still preserved.

In realistic cases of physiological recordings, there are not usually enough data to support
a sufficiently fine quantization. In such cases, we are forced to accept a coarse quantization
which does not recover all the structure of a particular neural coding scheme. The criterion
we have adopted for stopping the refinement process is when the estimate of the information
distortion does not change within its error bounds, which may be obtained analytically or by
statistical re-estimation procedures.

Many of the coding schemes currently in use can be seen as special cases of the method
we present here. A rate code can be described as a deterministic quantization to the set of
integers. The quantizer assigns all spike patterns with the same number of spikes to the same
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equivalence class. A spike latency code can be seen as a quantization to classes determined
by the latency and jitter of the spike’s timing. A stimulus feature is decoded as in the rate
code case, based on which latency ‘class’ a spike falls in. The metric space approach [40] uses
an explicit cost (distortion) function to determine what different sequences are identical: they
are equivalent if according to the cost function their difference is below a certain threshold.
The cost function and identification threshold induce a deterministic quantization of the input
space to a smaller output space.

Most current approaches to studying neural coding rely on formulating a hypothesis
about the coding scheme a neural system may use and then using observations to estimate
parameters of the hypothesis. The complexity of the hypothesis determines the amount of
data needed for reliable estimates of the necessary parameters. The method presented in this
report offers a means for data-driven hypothesis formulation. When we stop the refinement
of the reproduction due to lack of data, we effectively formulate a hypothesis about the most
informative coding scheme that can be supported with the available amount of data. When
more observations become available, the hypothesis can be refined automatically to include
them for a better approximation.

Recent applications of information theory to problems of neural coding [5, 7, 33]
concentrate on estimating information-theoretic quantities without regard to the actual
stimulus/response relationship that produced them. The strong point in that approach—that
it does not require a detailed understanding of the coding process—is also a weak point from
another perspective. As we mentioned, without the model of a coding scheme we present
here, many candidate hypotheses must be investigated one by one. For example, in [5] the
basic elements are a pair of events, in [4] a combination of rate and latency codes. Using
the approach described here, we can characterize coding schemes without reference to the
underlying physical processes that produce them. It could be that the codeword classes that
emerge after the analysis are well described by a simple mechanism, but we also have the ability
to analyse and describe quite succinctly coding schemes which have not been considered so
far.

We developed the information distortion method from a purely practical necessity—
the need to describe a neural coding scheme on large input and output spaces. Our earlier
research [9, 35] and others [23, 25, 33, 41] estimate just a few bits of mutual information per
neuron in several distinct sensory systems. In view of our model of a coding scheme this
suggests that there are just a few codeword classes that need to be identified, regardless of the
size of the response space. Thus it was natural to devise a method that clustered the neural
representation in a few large sets, while preserving most of the mutual information. We were
therefore quite excited to find another recently developed approach [37], which suggested
a very similar method (‘the information bottleneck’) for completely abstract reasons (the
authors attempt to extract ‘meaningful’ or ‘relevant’ information from a pair of interacting
systems). The different motivations are obvious. We explicitly concentrate on the case of
finite (albeit large) spaces, so that the method is applicable to computer-recorded data and
numerical analysis. The ‘information bottleneck’ method [37] uses a variational approach to
continuous random variables, which is better suited for abstract analysis. We cannot assess
its applicability to actual stimulus/response datasets, since no examples of its performance are
presented in [37]. The only application we found cited there [32] suffers from two unfortunate
choices. First, it applies the method to a problem which, albeit real, is not well understood, so
we could not distinguish the limitations of the algorithm from the constraints of the problem
itself. Second, it chooses to forgo the simplicity offered by the small reproduction space and
probabilistic clustering [28] and instead uses an ad hoc deterministic clustering method to find
an approximation of the solution to their problem, which makes assessing the properties of
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the method even more difficult. We hope that further developments in both approaches will
eventually converge to a unified method for data analysis.

The information distortion DI seems to be extremely well suited for uncovering the
structure of information channels. While appendix B addresses some of the properties of
this object, more research is needed to elucidate these further. Since it is concave and its first
and second derivatives are continuous except at the boundaries of its domain, it is amenable
to various analytical techniques, which can help clarify the structure of the optimal solution
and bifurcations at different values of the distortion. However, this is beyond the scope of this
paper.

It is interesting to note that, although we had neural coding in mind while developing the
information distortion method, the ensuing analysis is in no way limited to nervous systems.
Indeed, the constraints on the pair of signals we analyse are so general that they can represent
almost any pair of interacting physical systems. In this case, finding a minimal information
distortion reproduction allows us to recover certain aspects of the interaction between the two
physical systems, which may improve considerably any subsequent analysis performed on
them. It is also possible to analyse parts of the structure of a single physical system Y , if X

is a system with known properties (e.g. a signal generator, controlled by a researcher) and is
used to perturb Y . These cases point to the exciting possibility of obtaining a more automated
approach for succinct descriptions of arbitrary physical systems through the use of minimal
information distortion quantizers.
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Appendix A. Information theory

The goal of this section is to summarize results from information theory, pertinent to the
body of the paper. Statements of standard results are made with some precision so that the
interested reader can trace the foundation of our discussion about coding and quantization
earlier in the paper. An extended treatment of these topics and more can be found in [6]. A
more formal treatment can be found in [14], where the subject is approached with greater care
and mathematical precision.

Appendix A.1. Source space, probability measure and random variables

An information source is a mathematical model for a physical system that produces a succession
of symbols in a manner which is unknown to us and is treated as random. The set X , containing
all possible output symbols, is called the alphabet of the source. Let A be a σ -field of subsets
of X . The treatment of events (sets of sequences of symbols) is achieved through assigning
a probability measure p(x) = Pr{X = x}, x ∈ X to (X , A). The triplet (X , A, p) is often
called a random variable, X, when the context of the alphabet and measure is clear.

In cases with two or more alphabets, one can define a probability measure p(x, y) on
the product space (x, y) ∈ X × Y . In this context the induced probability measures on the
individual spaces are called marginal measures or marginals. An important measure which
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emerges from this setup is the conditional probability, defined as

p(x|y) ≡ p(x, y)

p(y)
, ∀(x, y) ∈ X × Y.

Two random variables are called independent if

p(x|y) = p(x) ∀y ∈ Y.

A measurable function defined on (X , A) and taking values in another measurable space
(Y, B) is a mapping f : X → Y with the property that

F ∈ B �⇒ f −1(F ) = {y : f (y) ∈ F } ∈ A.

Whenever it is well defined (usually when the measurable function is in a linear vector
space, e.g. Rn), one can perform integration, which is a functional on the space of measurable
functions. In probability theory this is called the expectation of the measurable function g(X)

and is defined as

Epg(X) ≡
∑
x∈X

g(x)p(x)

where the sum is replaced by an integral for continuous alphabets.

Appendix A.2. Information-theoretic quantities

The basic concepts of information theory are entropy and mutual information. The notion of
mutual information is introduced as an integral measure of the degree of dependence between
a pair of variables. The concept of entropy can then be understood as the self-information
of a random variable. They are both special cases of a more general integral quantity called
relative entropy (or KL divergence [20]), which is an integral measure of the difference between
two probability distributions. While mutual information is well defined for both discrete and
continuous alphabets, entropy for continuous alphabets is a problematic quantity, undefined
for many measures of interest. Fortunately many identities and bounds on mutual information
are still valid if one uses another integral measure from probability—the KL divergence, or
relative entropy, between two probability measures on the same event space:

KL(p‖q) = Eplog

(
p(x)

q(x)

)
(A.1)

where p and q are two different probability measures on X . KL(p||q) quantifies the difference
between two probability measures on the same sample space and is extensively used in
probabilistic decision theory. Note that, as with most of the quantities here, KL depends
only on probability measures and not on the elements of the space, which can be non-numeric.
Thus expectations are always well defined here irrespective of the structure of the event space.
The usual definitions of these quantities use a base two logarithm, so any further references
to the log function implicitly assume base two. On rare occasions we shall use the natural
logarithm, denoted by the symbol ln.

Appendix A.2.1. Mutual information. In order to measure the statistical independence
between two random variables X and Y it is useful to introduce the notion of mutual
information. It is defined as the KL distance between the joint probability p(x, y) on the
product alphabet X × Y and the product of marginal probabilities p(x) and p(y). I (X;Y ) is
equal to zero if and only if X and Y are independent:

I (X;Y ) ≡ KL (p(x, y), p(x)p(y)) = Ep(x,y)log
p(x, y)

p(x)p(y)
. (A.2)

The mutual information is symmetric with respect to its arguments: I (X;Y ) = I (Y ;X).
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Appendix A.2.2. Entropy. A measure of self-information of a probability distribution is given
by the entropy H(X):

H(X) ≡ Ep log
1

p(x)
= I (X;X). (A.3)

In communication theory H measures the average information that each symbol carries when
sampled.

The joint entropy of a pair of random variables is defined as

H(X, Y ) ≡ Ep(x,y) log
1

p(x, y)
. (A.4)

We also define the conditional entropy of a random variable given another as the expected
value of the entropies of the conditional distributions:

H(X|Y ) ≡ Ep(x)H(Y |X = x) = Ep(x,y) log
1

p(y|x) . (A.5)

Appendix A.2.3. Information identities. There are various identities connecting I and H [6].
Here is a short list of the most frequently used.

H(X) = I (X;X)

I (X;Y ) = H(X) − H(X|Y )

I (X;Y ) = H(Y) − H(Y |X)

I (X;Y ) = H(X) + H(Y) − H(X, Y )

H(X1, . . . , Xn) =
n∑

i=1

H(Xi |Xi−1, . . . , Xn)

I (X1, . . . , Xn;Y ) =
n∑

i=1

I (Xi;Y |Xi−1, . . . , X1).

(A.6)

Appendix A.3. Typical sequences

Theorem appendix A.1 (Asymptotic equipartition property (AEP)). If X1, X2, . . . Xn are
independent and identically distributed random variables (i.i.d.) with probability measure
p(x), then

n−1 logp(X1, X2, . . . , Xn)
−1 → H(X) (A.7)

in probability.

The theorem is a simple consequence of the weak law of large numbers. For its proof
and that of most other theorems consult [6]. Its extension to arbitrary ergodic finite-valued
processes is known as the Shannon–McMillan–Breiman theorem. All definitions and theorems
in this section will be presented in their i.i.d. form, but in general they are correct for ergodic
sources. The AEP allows us to define a structure in the set of events X .

Definition. The typical setAn
ε with respect top(x) is the set of sequences (x1, x2, . . . , xn) ∈ X n

with the following property:

2−n(H(X)+ε) � p(x1, x2, . . . , xn) � 2−n(H(X)−ε). (A.8)

The typical set has the following properties.
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Theorem appendix A.2 (Properties of typical sequences).

(i) If (x1, x2, . . . , xn) ∈ An
ε , then |n−1 logp(x1, x2, . . . , xn)

−1 − H(X)| � ε.
(ii) Pr{An

ε } > 1 − ε for n sufficiently large.
(iii) (1 − ε)2n(H(X)−ε) � |An

ε | � 2n(H(X)+ε) for n sufficiently large. Here |A| is the number of
elements in set A.

Appendix A.4. Jointly typical sequences

When analysing information channels, we deal with two sets of random sequences—input and
output. In this case it is necessary to consider the combined behaviour of the pair (X, Y ).

Definition. The set An
ε of jointly typical sequences {(xn, yn)} with respect to the distribution

p(x, y) is the set

An
ε = {(xn, yn) ∈ X n × Yn : | − n−1 logp(xn) − H(X)| < ε,

| − n−1 logp(yn) − H(Y)| < ε, | − n−1 logp(xn, yn) − H(X, Y )| < ε},
(A.9)

where p(xn, yn) = ∏n
i=1 p(xi, yi).

Theorem appendix A.3 (Properties of jointly typical sequences). Let (Xn, Y n) be i.i.d.
pair sequences of length n. Then the following hold.

(i) Pr(An
ε ) > 1 − ε.

(ii) |An
ε | � 2n(H(X,Y )+ε) for n sufficiently large.

(iii) If (X̃n, Ỹ n) are a pair of random variables with joint probability p(xn, yn) = p(xn)p(yn)

(i.e. X̃n and Ỹ n are independent with the same marginal distributions as Xn and Yn), then
for sufficiently large n

(1 − ε)2−n(I (X,Y )+3ε) � Pr
(
(X̃n, Ỹ n) ∈ An

ε

)
� 2−n(I (X,Y )−3ε).

The properties of jointly typical sequences can be used to prove one of the principal
theorems in information theory: the channel coding theorem. For lack of space we cannot do
this here. Instead we just state this important result. A complete proof using these techniques
can be found in [6].

Definition. A discrete channel is a system consisting of an input source X, an output source
Y and a transition probability p(y|x) of observing the output symbol y given x was sent. The
channel is memoryless if the transition probability is conditionally independent of previous
channel inputs and outputs.

Definition. The channel capacity of a discrete memoryless channel is

C = max
p(x)

I (X;Y ). (A.10)

Theorem appendix A.4 (The channel coding theorem). For any channel with capacity C

and every rate R < C there exists a sequence of codes with this rate and maximum probability
of error λ(n) → 0.

Conversely, any sequence of codes with λ(n) → 0 must have R � C.
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Appendix A.5. Distortion theory

Appendix A.5.1. The data processing inequality. The data processing inequality is used in
the proofs of most of the statements later, so we shall take some time to give proper definitions
and proofs.

Definition. Random variables X, Y,Z form a Markov chain (denoted by X → Y → Z) if the
conditional distribution of Z depends only on Y and is conditionally independent of X. In this
case, the joint probability can be written as

p(x, y, z) = p(z|y)p(y|x)p(x). (A.11)

In particular, if z = f (y), where f is a deterministic function of y, then X → Y → Z. Also
note that if X → Y → Z then Z → Y → X as well.

Theorem appendix A.5 (Data processing inequality). If X → Y → Z, then I (X;Z) �
I (X;Y ).

Proof. By the chain rule (last item in (A.6)) we can expand the mutual information in two
different ways.

I (X;Y,Z) = I (X;Z) + I (X;Y |Z)

= I (X;Y ) + I (X;Z|Y ).

Since X and Z are independent given Y , this implies I (X;Z|Y ) = 0. On the other hand,
I (X;Y |Z) � 0, so

I (X;Z) � I (X;Y ).

In particular, if Z = f (Y ) then I (X;Z) � I (X;Y ). �

One intepretation of this inequality is that any physical measurement, deterministic or not,
will usually decrease the information carried by one random variable about another.

Appendix A.5.2. Quantization. A random variable Y can be related to another random
variable YN through the process of quantization [6, 14]. YN is referred to as the reproduction
of Y . Quantizers can be deterministic (functions) or stochastic (given through a conditional
probability). The size of the reproduction space is smaller than the size of the quantized space.

A deterministic quantizer (or just quantizer, also referred to as hard clustering [28]) is any
simple measurable function f : X → Xf from X to a reproduction space Xf with finitely
many elements xi

f . The quantizer f induces a partition {Qi
f } such that

(i) Qi
f ⊂ X,

(ii) Qi
f

⋂
Q

j

f = ∅ if i �= j ,

(iii)
⋃

i Q
i
f = X.

The information quantities in the reproduction Xf are

H(Xf ) = Ep(xf ) log
1

p(xf )
= Ep(Qf ) log

1

p(Qf )
(A.12)

I (Xf , Yg) = Ep(xf ,yg) log
p(xf , yg)

p(xf )p(yg)
= Ep(Qf ,Qg) log

p(Qf ,Qg)

p(Qf )p(Qg)
. (A.13)

The quantizer h refines f (h > f ) if the partition Qh of X induced by h refines the
partition Qf induced by f . Qh refines Qf (Qh > Qf ) if any Qi

h ∈ Qh is a subset of some
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Q
j

f ∈ Qf . Note that in this case X → Xh → Xf ; i.e., the reproductions form a certain
Markov chain with the original space.

A stochastic quantizer (soft clustering [28]) is a mapping q from one probability measure
space X to another Xq . The mapping is given by the conditional probability q(xq |x), which
can be interpreted as the probability of x belonging to the reproduction class xq . The source
space induces a probability measure on the reproduction space by p(xq) = ∑

x q(xq |x)p(x).
A stochastic quantizer can also be considered as a communication channel. The deterministic
quantizer discussed above is a special case of a stochastic quantizer with q(xq |x) = 1 if x ∈ xq

and zero otherwise.
The information quantities in Xq are

H(Xq) = Ep(xq) log
1

p(xq)
(A.14)

I (Xq, Yg) = Ep(xq ,yg) log
p(xq, yg)

p(xq)p(yg)
. (A.15)

Unlike the deterministic case, here we do not have a nice inverse image of the quantizer
map to define refinements in the usual way. Thus we choose a different property of the quantizer
as a definition of refinement: the quantizer h refines f (h > f ) if X → Xh → Xf (that is,
Xf is upstream of Xh in a Markov chain).

There are some properties of quantizers (deterministic or stochastic) that are useful for
discussing information transmission.

If h > f , then from the Markov relation and theorem appendix A.5 it follows that

H(Y |Xh) � H(Y |Xf )

I (Y,Xh) � I (Y,Xf ).
(A.16)

For any X (discrete or continuous), and any quantizer f

I (Y,X) � I (Y,Xf ) (A.17)

that is, estimates in the quantized spaces are always lower bounds of the actual information
quantities.

When X is continuous, H(Xf ) diverges with refinements [14]. I (X, Y ) on the other
hand can always be obtained as the least upper bound over all refinements. Without further
constraints, this is achieved by a deterministic quantizer [28].

The statements above suggest that quantizations could provide lower-bound estimates of
H and I with controlled precision, since the size of the pattern set is fixed by the size of the
quantized space and could be potentially much lower than the size of the original pattern space.
This allows us to obtain more precise estimates of the quantities in question.

Appendix A.5.3. Distortion theory. The quality of a quantization is the topic of distortion
theory [6]. It is characterized by a distortion function d : X × Xq → R+. The distortion
function d(x, xq) measures how well x is represented by xq . In general it can be arbitrary. The
expected distortion

D(q(xq |x)) = Eq(xq |x)p(x)d(x, xq)

measures the quality of quantization by the quantizer q(xq |x).
Definition. The rate distortion function R(D) for a source X, reproduction Xq and distortion
d(x, xq) is defined [6] as

R(D) = min
q(xq |x):D(p(x,xq ))�D

I (X;Xq). (A.18)
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The minimization here is over all stochastic quantizers q(xp|x) which satisfy the distortion
constraint.

The solution to (A.18) is a standard minimization problem of the convex function
I (X,Xq) over the convex set {q(xq |x) : q(xq |x) � 0; ∑

xq
q(xq |x) = 1;D(q(xq |x)p(x)) ≡∑

x,xp
q(xp|x)p(x) d(x, xp) � D}. Analytically it can be solved by using Lagrange multipliers

to minimize

J (q(xq |x)) = I (q(xq |x)p(x)) + βD(q(xq |x)) +
∑
x

µ(x)
∑
xq

q(xq |x)

and find λ and µ(x) from the constraints.

Appendix B. Properties of the information distortion function

Appendix B.1. Definition

The (average) information distortion DI between a random variable Y and its reproduction
YN is defined through another random variable, X, related to Y so that X → Y → YN form a
Markov chain. In this case, we define the information distortion between Y and YN as

DI(Y, YN) = I (X, Y ) − I (X, YN). (B.1)

The only part that depends on the quantizer q(yN |y) is I (X, YN) so we can concentrate
on the properties of Deff = I (X, YN).

Appendix B.2. Properties

DI is a bounded function of the quantizer. Indeed, since DI = I (X, Y ) − I (X, YN) and
0 � I (X, YN) � I (X, Y ), this implies 0 � DI � I (X, Y ).

DI is an expected distortion—an integral characteristic of the relation between the
whole sets Y and YN . We can write it in a form that includes explicitly the expectation
of a pointwise distortion function. Indeed, using that p(x, y) = ∑

yN
p(x, y, yN) and

p(x, yN) = ∑
y p(x, y, yN), we have

DI = I (X, Y ) − I (X, YN)

=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
−

∑
x,yN

p(x, yN) log
p(x, yN)

p(x)p(yN)
(B.2)

=
∑

x,y,yN

p(x, y, yN)
(

logp(x|y) − logp(x|yN)
)

(B.3)

=
∑
y,yN

p(y, yN)
∑
x

p(x|y) log
p(x|y)
p(x|yN)

=
∑
y,yN

p(y, yN) KL
(
p(x|y)‖p(x|yN)

)
. (B.4)

Here (B.3) uses the Bayes property p(x, y)/p(y) = p(x|y) and logp(x) is common for the
two parts and cancels. Step (B.4) uses the Markov property p(x, y, yN) = p(x|y)p(y, yN).
This shows that the information distortion

DI = Ep(y,yN )KL
(
p(x|y)‖p(x|yN)

)
(B.5)

is the expectation of the KL divergence (A.1) of p(x|y) with respect to p(x|yN). Unlike
the pointwise distortion functions usually investigated in information theory [6, 28], this one
depends on the quantizer q(yN |y), thorough p(x|yN).
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In the process of investigating the information distortion function we may have to evaluate
it at values of q(yN |y) which are not conditional probabilities. The only requirement we want
to impose on q is that it be non-negative: q(yN |y) � 0. For this reason we need to define
certain relations which are automatically true when q(yN |y) is a conditional probability. We
shall use that p(x, y) is a probability function. With that in mind,

p(x) =
∑
y

p(x, y)

p(y) =
∑
x

p(x, y).
(B.6)

We define

p(x, yN) ≡
∑
y

q(yN |y)p(x, y) (B.7)

p(yN) ≡
∑
x

p(x, yN) =
∑
y

q(yN |y)
∑
x

p(x, y)

q(yN |x) ≡
∑
y

q(yN |y)p(y|x). (B.8)

All these are automatically true when q(yN |y) is a conditional probability. If q(yN |y) is not
a conditional probability, none of the above are probabilities but all are non-negative. Also
p(x) �= ∑

yN
p(x, yN) unless q(yN |y) is a conditional probability. It is still the case that

p(x, yN) = q(yN |x)p(x) (B.9)

(the Bayes property) because of (B.6) and the definitions (B.7). With these definitions, the
natural extensions for the information quantities (A.2), (A.5) for arbitrary non-negativeq(yN |y)
are

I (X, YN) ≡
∑
x,yN

p(x, yN) log
p(x, yN)

p(x)p(yN)

H(YN |Y ) ≡
∑
y,yN

q(yN |y)p(y) log q(yN |y).
(B.10)

Lemma appendix B.1 (Convexity of DI ). The information distortion function DI is a
concave function of any q(yN |y) � 0.

Proof. Consider DI = I (X, Y ) − I (X, YN). The first term is constant with respect to
the q(yN |y), so it is sufficient to consider only the second term. Using the definition of I

above (B.10) and (B.9) we can see that I (X, YN) is a function of q(yN |x)p(x). For a fixed
p(x), I (q(yN |y)) is a convex function of q(yN |x) [6] (shown there for q(yN |x) a probability,
but easily extensible for any q(yN |x) � 0). Hence,

I (λq1(yN |x) + (1 − λ)q2(yN |x)) � λI (q1(yN |x)) + (1 − λ)I (q2(yN |x)) (B.11)

for any q1, q2 � 0. We need to show that I is also a convex function of q(yN |y). Because
of (B.7),

q(yN |x) =
∑
y

q(yN |y)p(y|x). (B.12)

Consider Ĩ (q(yN |y)) ≡ I
( ∑

y q(yN |y)p(y|x)). For any q1(yN |y), q2(yN |y) � 0,

Ĩ (λq1(yN |y) + (1 − λ)q2(yN |y)) = I

( ∑
y

(
λq1(yN |y) + (1 − λ)q2(yN |y)))p(y|x)

)



Neural coding and decoding 469

= I

(
λ

∑
y

q1(yN |y)p(y|x) + (1 − λ)
∑
y

q2(yN |y)p(y|x)
)

= I
(
λq1(yN |x) + (1 − λ)q2(yN |x)) (B.13)

� λI (q1(yN |x)) + (1 − λ)I (q2(yN |x))
= λI

( ∑
y

q1(yN |y)p(y|x)
)

+ (1 − λ)I

( ∑
y

q2(yN |y)p(y|x)
)

= λĨ (q1(yN |y)) + (1 − λ)Ĩ (q2(yN |y)) (B.14)

where (B.13) follows from (B.12) and (B.14) is a consequence of the convexity of I (B.11). This
finishes the proof that I (X, YN) is a convex function of q(yN |y). Since DI ∝ −I (X, YN) ⇒
DI is a concave function of the quantizer q(yN |y). �

Appendix B.3. Derivatives

DI is a function of the quantizer q(yN |y). The effective distortion Deff = I (X, YN) has the
same derivatives with respect to the quantizer as DI , with opposite sign, so we shall consider
only the derivatives of Deff . In this section we shall explicitly use the assumption that all
spaces are finite and discrete. We do not use anywhere the fact that q(yN |y) is a conditional
probability. The final results are thus ready for programming in a computer or for further
finite-dimensional analysis. The results for continuous random variables can easily be adapted
from here using analogous methods from calculus of variations. We use Latin indices (i, j, k)
to denote members in the original spaces X, Y and Greek indices (µ, ν, η) for elements of the
reproduction YN . While differentiating, we shall use the natural logarithm (ln) in all definitions
and rescale the results to base two logarithm (log) at the end.

In terms of the quantizer,

Deff =
∑
i,µ

p(xi, yµ) ln
p(xi, yµ)

p(xi)p(yµ)
(B.15)

where (B.7)

p(xi, yµ) ≡
∑
j

q(yµ|yj )p(xi, yj )

p(yµ) ≡
∑
j

q(yµ|yj )p(yj ).
(B.16)

It is beneficial to calculate the derivatives of (B.16) before attempting this for Deff . We use the
fact that ∂q(yµ|yj )

∂q(yν |yk)
= δµνδjk . The derivatives are

∂p(xi, yµ)

∂q(yν |yk)
= δµνp(xi, yk)

∂p(yµ)

∂q(yν |yk)
= δµνp(yk).

(B.17)

Using (B.17),

(∇Deff)νk ≡ ∂Deff

∂q(yν |yk)

= ∂

∂q(yν |yk)

∑
i,µ

p(xi, yµ) ln
p(xi, yµ)

p(xi)p(yµ)
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=
∑
i,µ

∂p(xi, yµ)

∂q(yν |yk)
ln

p(xi, yµ)

p(xi)p(yµ)
+ p(xi, yµ)

∂

∂q(yν |yk)

(
ln p(xi, yµ) − ln p(yµ)

)

=
∑
i,µ

δµνp(xi, yk) ln
p(xi, yµ)

p(xi)p(yµ)
+ δµνp(xi, yµ)

(
p(xi, yk)

p(xi, yµ)
− p(yk)

p(yµ)

)

=
∑
i

p(xi, yk) ln
p(xi, yµ)

p(xi)p(yµ)
−

≡p(yk)︷ ︸︸ ︷∑
i

p(xi, yk) +
p(yk)

p(yµ)

≡p(yµ)︷ ︸︸ ︷∑
i

p(xi, yµ) (B.18)

⇒ (∇Deff)νk =
∑
i

p(xi, yk) ln
p(xi, yν)

p(xi)p(yν)
. (B.19)

The second derivatives are

∂2Deff

∂q(yη|yl)∂q(yν |yk)
= ∂

∂q(yη|yl)

∑
i

p(xi, yk) ln
p(xi, yν)

p(xi)p(yν)

=
∑
i

p(xi, yk)
∂

∂q(yη|yl)

(
ln p(xi, yν) − ln p(yν)

)

=
∑
i

p(xi, yk)δνη

(
p(xi, yl)

p(xi, yν)
− p(yl)

p(yν)

)
(B.20)

⇒ ∂2Deff

∂q(yη|yl)∂q(yν |yk)
= δνη

( ∑
i

p(xi, yk) p(xi, yl)

p(xi, yν)
− p(yk)p(yl)

p(yν)

)
. (B.21)

In all cases we assume that all relevant quantities are absolutely continuous with respect to one
another, so that all divisions can be performed. In practice this means that any optimization
has to be restricted away from zero, since the gradients diverge there. When a deterministic
quantizer (hard clustering) is required, the optimization can be brought close to a boundary
(q(yN |y) ≈ 0 for some (yN, y)) and then thresholded to obtain the deterministic map.

When posing the optimization problem (section 3.3), we encounter the functional F =
H(YN |Y ) − βDI . To analyse it further we also need the derivatives of H(YN |Y ):

(∇H)νk ≡ ∂H(YN |Y )

∂q(yν |yk)

= − ∂

∂q(yν |yk)

∑
j,µ

q(yµ|yj )p(yj ) ln q(yµ|yj )

= −
∑
j,µ

p(yj )δµνδjk
(

ln q(yµ|yj ) + 1
)

⇒ (∇H)νk = −p(yk)
(

ln q(yν |yk) + 1
)
. (B.22)

The second derivatives are

∂2H(YN |Y )

∂q(yη|yl)∂q(yν |yk)
= − ∂

∂q(yη|yl)
p(yk)

(
ln q(yν |yk) + 1

)

= − p(yk)

q(yν |yk)
δνηδkl . (B.23)

To obtain the results when the information quantities are measured in bits, all of the derivatives
above should be divided by ln 2 ≈ 0.6931.
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