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A Simple Model of Long-term Spike Train Regularization 
 
Relly Brandman 
Department of Computer Science and Beckman Institute for Advanced Science and 
Technology, University of Illinois, Urbana, Illinois 61801USA 
 
Mark E. Nelson 
Department of Molecular and Integrative Physiology and Beckman Institute for 
Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801USA 
 
A simple model of spike generation is described that gives rise to negative 
correlations in the interspike interval (ISI) sequence and leads to long-term spike train 
regularization. This regularization can be seen by examining the variance of the 
kth-order interval distribution for large k (the times between spike i and spike i+k). 
The variance is much smaller than would be expected if successive ISIs were 
uncorrelated. Such regularizing effects have been observed in the spike trains of 
electrosensory afferent nerve fibers and can lead to dramatic improvement in the 
detectability of weak signals encoded in the spike train data (Ratnam & Nelson, 
2000). Here we present a simple neural model in which negative ISI correlations and 
long-term spike train regularization arises from refractory effects associated with a 
dynamic spike threshold. Our model is derived from a more detailed model of 
electrosensory afferent dynamics developed recently by other investigators (Chacron, 
Longtin, St-Hilaire, & Maler, 2000; Chacron, Longtin, & Maler, 2001). The core of 
this model is a dynamic spike threshold that is transiently elevated following a spike, 
and subsequently decays until the next spike is generated. Here we present a 
simplified version–the linear adaptive threshold model–that contains a single state 
variable, and three free parameters that control the mean and coefficient of variation 
of the spontaneous ISI distribution and the frequency characteristics of the driven 
response. We show that refractory effects associated with the dynamic threshold lead 
to regularization of the spike train on long time scales.  Furthermore, we show that 
this regularization enhances the detectability of weak signals encoded by the linear 
adaptive threshold model. Although inspired by properties of electrosensory afferent 
nerve fibers, such regularizing effects may play an important role in other neural 
systems where weak signals must be reliably detected in noisy spike trains. When 
modeling a neuronal system that exhibits this type of ISI correlation structure, the 
linear adaptive threshold model may provide a more appropriate starting point than 
conventional renewal process models that lack long-term regularizing effects. 
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1 Introduction 
 
When a spiking neuron encodes an input signal, subsequent processing of that signal 
by postsynaptic neurons must be based on changes in the statistical properties of the 
output spike train. If there is background spike activity, then the variability of the 
background will influence how reliably other neurons can detect the presence of a 
weak signal encoded in the spike train data. The variability of a spike train is often 
characterized by the coefficient of variation (CV) of the first-order interspike interval 
(ISI) distribution. However, the first-order ISI distribution provides information about 
variability only on short time scales comparable to the mean ISI (for review, see 
Gabbiani and Koch, 1998).  
 
It is possible for a spike train to be irregular on short time scales, but regular on 
longer time scales, as we have shown experimentally for P-type (probability-coding) 
electrosensory afferent nerve fibers in a weakly electric fish (Ratnam and Nelson, 
2000). This longer-term regularization can be observed by analyzing the kth-order 
interval distribution (the distribution of time intervals between spike i and spike i+k).  
If successive ISIs in the spike train are uncorrelated, then the variance of the kth-order 
distribution will be a factor of k times larger than the variance of the first-order ISI 
distribution. However, in our experimental study of electrosensory afferents, we 
found that the variance between say every 50th spike in the spike train was 
significantly smaller than would be expected if successive ISIs were uncorrelated. We 
further demonstrated that this regularization is associated with negative correlations 
in the ISI sequence and that the detectability of a weak signal can be significantly 
enhanced when such regularization exists. The negative correlation structure and 
regularizing effects observed in the data have recently been reproduced in a modeling 
study based on a stochastic model of firing dynamics (Chacron et al., 2000; M. J. 
Chacron, A. Longtin, and L. Maler, 2001). 
 
Refractory effects are known to have a short-term regularizing influence on spike 
activity by decreasing the CV of the first-order ISI distribution and increasing the 
temporal precision of the driven response (Berry and Meister, 1998). Refractory 
effects are often modeled by introducing a recovery function that reduces the firing 
probability immediately following a spike (for reviews, see Berry and Meister, 1998; 
Johnson, 1996). In such models, refractory effects are dependent only on the time of 
the previous spike and are not sensitive to the duration of previous interspike 
intervals. If the input is held constant in such models, then successive intervals are 
independent and identically distributed. In this case no correlations are introduced 
into the ISI sequence. For such renewal models, the refractory mechanism has no 
impact on the long-term regularity of the spike train. In contrast, the refractory 
mechanism presented here is implemented as a dynamic state variable that retains a 
memory of previous activity spanning multiple interspike intervals. This non-renewal 
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model of spike generation gives rise to negative correlations in the ISI sequence and 
long-term regularization of the spike train.  
 
Here we present a simple model of a spike generating mechanism that gives rise to 
regularizing effects similar to those observed in electrosensory afferent spike trains. 
Our model is inspired by the more detailed model of Chacron et al. (2000; 2001), in 
which they showed that a stochastic model of spike generation with a dynamic 
threshold is able to accurately describe the key features of spike trains observed in the 
electrosensory afferent data (Nelson, Xu, & Payne, 1997; Ratnam & Nelson, 2000). 
To achieve a good match with the data, their model included about 15 parameters. 
However, because our model has only three parameters and one state variable, the 
relationships between the model parameters and the spike train properties are more 
readily apparent. Because of its simplicity, the model is easily adaptable to many 
neural modeling applications. In particular, it is a better choice than more widely used 
renewal process models when modeling spike trains that exhibit long-term 
regularizing effects. 
 
2 The linear adaptive threshold model 
 
The goal of this simplified model is to obtain a minimal description of the spike 
generating mechanism that gives rise to long-term spike train regularization.  This 
simplified model is intended to serve as a generic basis for constructing more detailed 
system-specific models, as illustrated by the example in Section 5. Although the 
model is highly simplified, it captures the important dynamic features of the process, 
and reflects a level of abstraction similar to that of the well-known integrate-and-fire 
model (Stein, 1967).  An important simplification is that the model presented here 
uses a linear decay function, rather than the exponential threshold decay function 
used by Chacron et al. (2000; 2001). As we will show, this results in a simpler 
relationship between the model parameters and the spike train characteristics. Finally, 
the model presented here is formulated in a discrete-time framework, although it can 
also be cast in continuous time. A discrete-time formulation has the advantage of 
avoiding complications associated with the numerical integration of Gaussian noise in 
continuous time, and for this reason is more computationally efficient because it 
requires fewer integration steps per unit time. We are currently using an extended 
version of this model (see section 5) to simulate the neural activity of the entire 
population of 15,000 P-type electrosensory afferent nerve fibers of an electric fish, so 
matters of computational efficiency become of practical importance. 
  
The linear adaptive threshold model contains three essential parameters (a, b, and σ), 
and a single dynamic state variable, the spike threshold θ. For the sake of generality, 
we also include a fourth parameter c, the input gain, which we will subsequently take 
to be unity. As will be shown in Section 4, the parameter c is redundant in terms of 
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functionality, but it is included to facilitate conceptualization of the model in a neural 
framework. If one wishes to think of the input as a current, and the threshold as a 
voltage level, then the gain parameter c takes on units of electrical resistance. Figure 
1 illustrates the operating principles of the model. The model is described by four 
update rules, which are evaluated in the following order at each time step n: 
 
 v[n] = c i[n] + w[n] (2.1) 
 θ[n] = θ[n-1] – (b/a) (2.2) 

 s[n] = H(v[n] – θ[n]) = 


 ≥

otherwise0
][θ][if1 nnv
 (2.3) 

 θ[n] = θ[n] + b s[n] = 


 =+

otherwise][θ
1][if][θ

n
nsbn

 (2.4) 

 
where H is the Heaviside function, defined as H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 
0. The voltage v is the product of the input resistance c and the instantaneous input 
current i, plus random noise w, where w is zero-mean Gaussian noise with variance 
σ2. (In section 5, we show that the model can easily be extended to include the effects 
of a membrane time constant, but this extension is not necessary for understanding 
the regularizing effects of the model.) When the voltage v rises above a threshold 
level θ, a spike is generated (s = 1) and the threshold level is elevated by an amount 
b. The threshold subsequently decays linearly with a slope of –b/a until the next spike 
is generated. From equation 2.2 alone, one might get the impression that the threshold 
θ is unbounded and could decay to arbitrarily large negative values. However, 
because the threshold level is boosted whenever θ <  v, the voltage level v serves as 
the effective lower bound for the threshold. The output of the model is a binary spike 
train s, with s[n] = 1 if a spike was generated at time step n, and s[n] = 0 otherwise. 
The model parameters are restricted to a > 1, b > 0, and σ > 0. The parameter a has 
units of time steps, while b and σ have units of voltage. The update interval can be 
adjusted to meet the temporal resolution required for a specific modeling application. 
 
3 Statistical properties of spontaneous spike activity in the model 
 
3.1 Mean and CV of the first-order ISI. In the absence of an input signal (i = 0), 
the linear adaptive threshold model generates spontaneous spike activity. The 
parameter a controls the mean ISI and the ratio σ/b controls the CV of the ISI 
distribution. Representative spontaneous ISI distributions are shown in Figure 2. For 
a sufficiently long spike train, the empirically measured mean ISI (in time steps) 
becomes identical to a. The mathematical basis for this result is presented in Section 
3.4 (equation 3.7). The CV of the ISI distribution can range between 0 and 1, and 
increases monotonically with σ/b. 
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The mean and CV of an experimentally observed spontaneous ISI distribution can be 
matched by appropriate adjustments of a and σ/b, and the size of the time step. In our 
experimental studies of electrosensory afferents in weakly electric fish, the frequency 
of the oscillatory electric organ discharge (EOD) signal provides a natural time 
reference. P-type afferents fire at most one spike per EOD cycle (Scheich, Bullock, & 
Hamstra, 1973); hence it is natural to set the step size equal to one EOD cycle. For 
brown ghost knifefish, Apteronotus leptorhynchus, the EOD frequency is extremely 
stable for an individual fish (Moortgat, Keller, Bullock, & Sejnowski, 1998) and 
ranges from about 600 to1200 Hz. The corresponding step size in the model would 
range from 0.8 to 1.7 msec. Figure 3A1 shows the spontaneous ISI distribution for a 
representative P-type afferent fiber (Ratnam & Nelson, 2000). The ISI distribution 
has a mean of 2.9 EOD cycles and a CV of 0.46. Figure 3A2 shows the 
corresponding distribution for the linear adaptive threshold model with a = 2.9 msec, 
b = 2.0 mV and σ = 1.0 mV. Although the two distributions are clearly not identical, 
the mean and CV of the model ISI distribution match that of the data (mean = 2.9, 
CV = 0.46).  
 
3.2 Negative correlations in the ISI sequence. The linear adaptive threshold model 
gives rise to negative correlations between adjacent intervals in the ISI sequence, 
meaning that short intervals tend to be followed by long intervals and vice versa.  
Similar effects are observed in electrosensory afferent data, as illustrated by the joint 
interval histograms of adjacent ISIs shown in Figures 3B1 and 3B2. In the 
experimental data, we observed a mean correlation coefficient of  –0.52 in a 
population of 52 P-type afferent spike trains (Ratnam & Nelson, 2000). For the 
particular unit shown in Figure 3B1, the correlation coefficient was −0.58, while for 
the model it was –0.40 (see Figure 3B2).  
 
The linear adaptive threshold model qualitatively captures the short-long correlation 
structure of the ISI sequences observed in the data.  In the model the negative 
correlation structure arises because the decay function tends to leave the threshold at 
a higher level following a short interval than following a long interval. This short-
long correlation structure has been observed experimentally in many neural systems 
(Kuffler, Fitzhugh, & Barlow, 1957; Calvin & Stevens, 1968; Johnson, Tsuchitani, 
Linebarger, and Johnson, 1986; Lowen & Teich, 1992), and is one indication of spike 
train regularization. 
 
3.3 Spike train variability on longer time scales. There are two simple ways to 
characterize the variability of a spike train on time scales longer than the mean ISI. 
The traditional way is to count the number of spikes occurring in non-overlapping 
windows of fixed duration T and examine how the variance of the count distribution 
changes with T. An alternative approach is to measure the time interval between 
every kth spike in the spike train, and examine how the variance of the kth-order 



   

 6 

interval distribution changes with k. If the spike train arises from a renewal process 
(Cox, 1962), there are no correlations in the interspike interval sequence, in which 
case both the mean and the variance of the kth-order interval distribution grow linearly 
with k. Thus for a renewal process the variance-to-mean ratio of the kth-order interval 
distribution is a constant, independent of k. In the traditional approach, where one 
counts the number of spikes in windows of duration T, the variance-to-mean ratio of 
the count distribution is called the Fano factor (Fano, 1947). For a renewal model, the 
Fano factor asymptotically approaches a constant value for large T, but it is not 
constant for small count windows (Cox & Lewis, 1966). Thus analysis of the kth-
order interval distributions offers a more definitive test for deviations from renewality 
in the ISI sequence. 
 
In both the data and the model, regularization effects persist over time periods that 
are much longer than a single interspike interval. As described above, these longer-
term effects can be quantified by observing the behavior of the variance-to-mean ratio 
of the kth-order interval distribution with increasing interval order k. As shown in 
Figure 3C1, the variance-to-mean ratio for the data falls rapidly for the first 10-20 
interval orders (approximately as k-1). The behavior of the model is quite similar (see 
Figure 3C2). In the model, the dynamic threshold provides a long-term memory of 
previous spike activity allowing regularizing effects to persist over multiple 
interspike intervals. Thus the simple linear adaptive threshold model is able to 
capture the key features of spike train regularization observed in the experimental 
data. 
 
3.4 The mathematical basis of long-term regularity in the model.  In this section 
we explain how the mathematical structure of the linear adaptive threshold model 
gives rise to long-term regularity of the output spike train.  Specifically, we analyze 
spontaneous spike activity and show that the variance of the kth-order interval 
distribution Var(Ik) approaches a constant value for large k.  The fact that the variance 
becomes independent of interval order k means, for example, that the variance in the 
distribution of time intervals between every thousandth spike in the spike train is 
essentially the same as the variance between every hundredth spike. This is in striking 
contrast to a renewal process model, for which the variance would continue to 
increase linearly with k, giving rise to a variance-to mean ratio that stays constant for 
all interval orders k. The key result regarding long-term spike train regularity for the 
linear adaptive threshold model is that Var(Ik) approaches a constant for large k. 
Since the mean interval between spikes grows linearly with interval order k, the 
variance-to-mean ratio will fall as k-1, as illustrated in Figure 3. 
 
To understand why Var(Ik) approaches a constant for large k, it is useful to recast the 
linear adaptive threshold model (equations 2.1 – 2.4) into a slightly different form. 
The new formulation gives rise to a set of spike times that are identical to those 
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generated by the original model, but the internal state variables are handled 
differently. Rather than raising the threshold level by an amount b each time a spike 
occurs (equation 2.4), we will instead lower the mean voltage level by an amount b. 
Since the decision of whether or not to generate a spike (equation 2.3) depends only 
on the relative difference between the threshold level and the voltage level, these two 
formulations will give rise to an identical set of spike times. Hence either formulation 
can be used when analyzing the statistical properties of the output spike train. The 
two formulations of the linear adaptive threshold model are illustrated in Figure 4. 
 
Following the structure of the original model (equations 2.1 – 2.4), we express the 
reformulated model as: 
 
 v[n] = c i[n] + w[n] + vbase (3.1) 
 θ[n] = θ[n-1] – (b/a) (3.2) 

 s[n] = H(v[n] – θ[n]) = 


 ≥

otherwise0
][θ][if1 nnv
 (3.3) 

 vbase = vbase - b s[n] = 


 =−

otherwise
1][if

base

base

v
nsbv

 (3.4)  

 
where vbase is the newly introduced baseline voltage level, and all other variables are 
as defined previously. Note that only two of the equations have changed from the 
original model (equations 3.1 and 3.4), but all four have been rewritten above for 
convenience.  In the reformulated model (equations 3.1-3.4) the threshold level θ is 
never boosted; rather it falls monotonically with a constant slope (equation 3.2). For 
spontaneous spike activity, the input i is zero; thus the voltage v is simply the baseline 
level vbase plus random noise (equation 3.1). In this reformulated version of the 
model, the threshold falls linearly toward a noisy voltage floor; each time a spike is 
generated the mean level of the floor drops by an amount b as illustrated in Figure 
4B. 
 
Now consider what happens in the reformulated model between spike i and spike i+k. 
Since k spikes were generated, the baseline level vbase will have dropped by an 
amount kb. If we choose k sufficiently large (k >> σ/b), then the drop in the baseline 
level kb will be much larger than the standard deviation σ of the voltage fluctuations 
around the baseline. Thus the change in voltage level between the time of spike i and 
spike i+k is: 
 
 ∆vi,i+k = -kb + O(σ) (3.5) 
 
where O(σ) is a small random correction on the order of σ related to the voltage 
fluctuations around the baseline level. Since the threshold falls linearly at a constant 
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slope (-b/a), and spikes are generated whenever the threshold crosses the voltage 
level, then the time difference between spike i and spike i+k is equal to the voltage 
difference divided by the threshold slope, thus: 
 
 ∆ti,i+k = ∆vi,i+k /(-b/a) = ak + O(aσ/b) (3.6) 
 
Thus for sufficiently large k, the time interval between spike i and spike i+k is equal 
to ak, plus a small random correction on the order of aσ/b. As long as the threshold 
level starts well outside the noise band (kb >> σ), the variance of this random 
correction will be independent of k. Hence Var(Ik) becomes constant for sufficiently 
large k (k >> σ/b).  Furthermore, the mean interspike interval <ISI> is given by  
 

 a
k

t
ISI kii

k
=

∆
= +

∞→

,lim  (3.7) 

 
as was noted earlier in section 3.1.  
 
The two key results obtained above are that Var(Ik) approaches a constant for large k 
and that the mean ISI is equal to a. It should be noted that these two results are 
independent of the noise structure that is used in the model. We formulated the model 
using Gaussian noise, but the same results would have been obtained for other forms, 
such as uniform or pink noise. The noise structure will have an effect on the 
asymptotic numerical value of Var(Ik). However, the fact that Var(Ik) approaches a 
constant value, and hence that the variance-to-mean ratio falls as k-1 as shown in 
Figure 3C2, is a robust result that is independent of assumptions about the detailed 
noise structure.  
 
4 Driven response characteristics of the model 
 
The driven response characteristics of the linear adaptive threshold model were 
evaluated using sinusoidal stimuli at frequencies between 0.1 and 100 Hz. In these 
simulations, the step size was taken to be 1 msec. The input signal was given by 
i[n] = S sin(2πfn/1000), where S is the stimulus amplitude (arbitrary units), and f is 
the stimulus frequency (Hz). The total stimulus duration was 100 seconds at each 
stimulus frequency. The response gain and phase were computed using methods 
described in Nelson et al. (1997). Briefly, cycle histograms of spike times were 
constructed and normalized such that the ordinate corresponded to firing rate in 
spikes per second. A single cycle sinusoid was fit to the cycle histogram  
r(x) = R sin(2πx + φ) + B where x is the cycle fraction (0 ≤ x ≤ 1), R is the response 
amplitude, φ is the response phase, and B is the baseline firing rate. The gain of the 
response at each frequency is computed as the ratio of response amplitude R to the 
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stimulus amplitude S, and has units of spike/sec per unit input. The phase of the 
response at each frequency is given by the best-fit value of φ (degrees).  
 
As illustrated in Figure 5, the linear adaptive threshold model has high-pass filter 
characteristics. At low frequencies, the gain is proportional to the stimulus frequency 
and the phase shift is 90 degrees, implying that the model behaves as a differentiator. 
At higher frequencies, the gain curve becomes flat and the phase drops toward zero. 
The overall gain of the response is determined by the model parameter b, which 
reflects the amount that the threshold level is elevated following a spike. The larger 
the threshold boost, the lower the gain. In the low-frequency range, where the model 
behaves as a differentiator, the gain is equal to 2πf/b, with units of spike/s per unit 
input. This functional form can be understood by considering the response of the 
model to a sinusoidal stimulus of amplitude S and frequency f. The rising phase of the 
sine wave will have a maximum slope of 2πfS. The rising slope will tend to shorten 
the mean interval between threshold crossings relative to baseline conditions. Recall 
that the threshold falls with a constant slope of -b/a (equation 2.2) and the mean ISI 
under baseline conditions is equal to a (equation 3.7). For a weak stimulus, a 
differential analysis reveals that the ISIs are shortened on average by an amount 
corresponding to a change in firing rate of 2πfS/b, and hence an overall gain of 2πf/b. 
 
If the input is scaled by an input gain c as in equation 2.1, then the overall gain 
becomes 2πfc/b. The parameter c is redundant in terms of being able to control the 
input-output gain of the model, since gain changes can be accomplished by changing 
b. However, as discussed in section 2, the parameter c is convenient if one wishes to 
interpret the model variables as currents and voltages. Empirically, the phase of the 
response remains unaffected by changes in gain (see Figure 5A). 
 
The corner frequency of the high-pass filter is determined by the model parameters a 
and σ/b. As these values increase, the corner frequency decreases. Qualitatively, the 
location of the corner frequency is related to the time scale that characterizes the 
interval between successive spikes in the spike train. If the shape of the ISI 
distribution is such that almost all ISIs are short compared to the period of the 
stimulus, the model behaves as a differentiator. If either a (which controls the mean 
ISI) or σ/b (which controls the CV) is large enough so that some of the ISIs in the 
spike train become comparable to the stimulus period, then the gain of the response 
begins to roll off, giving rise to the knee in the gain curve. Changes in the corner 
frequency also result in a corresponding change in the phase of the response (see 
Figure 5B). 
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5 Extensions to the model 
 
We now illustrate how one might extend the model to make it more biophysically 
plausible. For example, the extensions discussed here allow the model to better match 
the experimentally measured frequency response characteristics of electrosensory 
afferent data. The key point that we wish to make, however, is not that the extensions 
improve the fit to empirical data, but rather that the extensions do not alter the long-
term regularizing effects exhibited by the simpler model. In the linear adaptive 
threshold model, there were no dynamics associated with the membrane voltage v. 
Most neural modeling applications would want to at least include the effects of leaky 
integration by the cell membrane. This can be modeled as a first-order low-pass filter 
with time constant τm, which is incorporated by replacing equation 2.1 with equations 
5.1 and 5.2: 
 
 u[n] = exp(-1/τm)  u[n-1] + [1- exp(-1/τm)] i[n] (5.1) 
 v[n] = u[n] + w[n]. (5.2) 
 
Note that the noise term w[n] is added to the output of the low-pass filter u, rather 
than to the input. Thus, we consider the noise to reflect stochastic properties that are 
intrinsic to the neuron, rather than properties of the input signal. In terms of the 
frequency response characteristics, this extension to the model causes a roll off in 
gain and a decrease in phase above the corner frequency (fc = 1/2πτm) of the low pass 
filter.  
 
The second extension is to change the linear threshold decay function to a more 
biophysically plausible exponential decay toward a baseline level θ0, with a decay 
time constant τθ, as originally suggested by Chacron et al. (2000). This is 
incorporated by replacing equation 2.2 with equation 5.3: 
 
 θ[n] = exp(-1/τθ)θ[n-1] + [1- exp(-1/τθ)]θ0. (5.3) 
 
This change in the representation of the threshold decay does not have a significant 
effect on the general features of the first-order ISI distribution (see Figure 6A) or the 
long-term regularization properties (see Figure 6B), but it does alter the frequency 
response characteristics of the model (Figure 6C). Representative gain and phase 
plots for the extended model are shown in Figure 6C (solid lines).  The change in 
frequency response characteristics for the extended model can be appreciated by 
comparing the general shapes of the gain and phase curves in Figure 6C with those 
for the simpler model shown in Fig 5.  The parameters for the extended model were 
selected to closely match the average properties of P-type electrosensory afferents 
recorded in our experimental data (Nelson et al., 1997; Ratnam & Nelson, 2000). The 
extended model (equations 5.1-5.3, 2.3 and 2.4) is able to provide a good description 
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of the response characteristics of P-type electrosensory afferents, including the 
baseline ISI distribution, interval correlations, and frequency response characteristics. 
However, the main point of this section is to demonstrate that the linear adaptive 
threshold model can be extended to better match empirical data, while maintaining 
the long-term regularizing effects that are of central importance here (Figure 6B). 
 
6 Weak signal detectability 
 
 In this section we demonstrate that under certain circumstances, long-term spike 
train regularization can dramatically improve the detectability of a weak stimulus. We 
illustrate this by encoding a weak signal using two different neuron models, one that 
exhibits long-term spike train regularization and one that does not. The parameters of 
the two models are adjusted to have matched characteristics, including the mean and 
CV of the spontaneous ISI distribution and by the frequency response characteristics 
(gain and phase) of the driven response.  Such characteristics are commonly used by 
neural modelers to assess how well a particular model describes experimental data.  
We show that even though two models are well matched by these criteria, they can 
have significantly different properties in terms of signal detectability.  Our goal here 
is not to model any specific biological signal or system, but rather to present a generic 
example illustrating the potential functional importance of long-term spike train 
regularization in biological systems, and highlighting the importance of selecting a 
modeling framework that adequately accounts for correlations in the ISI sequence. 
 
6.1 Linear adaptive threshold model. For a model that exhibits long-term 
regularization, we use the simple form of the adaptive threshold model. Alternatively, 
we could have used the extended model, since it also exhibits long-term 
regularization, but the simple model embodies the essential features that are relevant 
for the comparison.  For this example, we implement equations 2.1-2.4 with the 
following parameters: a = 20 msec, b = 0.5 mV and σ = 1 mV, and a time step of 1 
msec. This parameter set gives rise to a spontaneous ISI distribution with a mean of 
20 msec and a CV of 0.69 (see Figure 7A1). For this example, we intentionally chose 
a σ/b ratio that produces an irregular spike train on short time scales, as judged by the 
CV of the first order ISI distribution. The frequency response characteristics of the 
model are summarized in Figure 7B1. The model has high-pass filter characteristics 
with a corner frequency of about 8 Hz. The effects of long-term spike train 
regularization are shown in Figure 7C1, where it is seen that the variance-to-mean 
ratio for the kth order interval distribution decreases as k-1. As discussed in section 3.4, 
this decrease in long-term variability arises from memory effects associated with the 
threshold dynamics.  
 
6.2 Integrate-and-fire model with random threshold. We now wish to compare 
this model with one lacking any such memory effects. For the memoryless model, we 
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also need to be able to adjust the mean and CV of the spontaneous ISI distribution, as 
well as the frequency response characteristics. These criteria can be satisfied by using 
a stochastic integrate-and-fire model with random threshold (Gabbiani & Koch, 1996; 
Gabbiani & Koch, 1998), coupled with a linear prefilter to adjust the frequency 
response characteristics. In this model, the input signal i is passed through a unity-
gain high-pass prefilter with time constant τf and summed with a constant bias input 
Ib which controls the spontaneous firing rate of the model. This input signal is 
integrated on each time step. When the integrated signal v exceeds a threshold θ, a 
spike is generated (s = 1). Following a spike, v is reset to zero and θ is reset to a new 
random value drawn from a gamma distribution of order m. Because the reset values 
contain no information about the previous state of the system, there are no memory 
effects in the ISI sequence of this model. 
 
In a discrete-time representation, this memoryless model including the high-pass 
prefilter is described by the following update rules:  
 
 f[n] = exp(-1/τf)  f[n-1] + [1- exp(-1/τf)] i[n] (6.1) 
 v[n] = v[n-1] + i[n] – f[n] + Ib (6.2) 
 s[n] = H(v[n] – θ[n]) (6.3) 
 v[n] = (1 – s[n]) v[n] (6.4) 
 θ[n] = (1 – s[n]) θ[n] + s[n] gm[n] (6.5) 
 
where gm[n] are random values drawn from a gamma distribution of order m with 
mean x  (Gabbiani & Koch, 1998): 
 
 gm(x) = cm(x/ x )m-1 exp(-mx/ x ) (6.6) 
 
with 

 
xm

mc
m

m
1

)!1( −
= . (6.7) 

 
The random threshold model as described above has four free parameters: τf, Ib, m 
and x . 
 
6.3 Comparison of response characteristics. The response properties of the 
stochastic integrate-and-fire model are shown in Figure 7 for τf = 20, Ib = 0.51, m = 2, 
and x  = 10. The mean and variance of the spontaneous ISI distribution (see Figure 
7A2) are almost identical to those of the adaptive threshold model (see Figure 7A1). 
Also, the frequency response characteristics of the two models are very similar (see 
Figures 7B1 and 7B2). However, the random threshold model has no memory effects 
in the ISI sequence. Hence for spontaneous spike activity, each interspike interval is 
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independent of the previous interval. For such a renewal process model, both the 
mean and variance of the kth order interval distribution grow linearly with interval 
order k, and hence the variance-to-mean ratio is independent of k (see Figure 7C2). 
Thus we see that the two models have almost identical response characteristics, 
except for their long-term regularity as measured by the kth-order interval variance-to-
mean ratios. 
 
6.4 Comparison of signal detectability. We now provide a weak input signal to both 
model neurons, and evaluate how reliably the signal can be detected in the output 
spike train. Specifically we consider a single-cycle sinusoidal input signal with 
amplitude A and duration D, satisfying the boundary conditions that the stimulus 
level and slope are zero at the beginning and end of the stimulus cycle. In discrete 
time, the input signal can be represented as: 
 
 i[n] = A [1 – cos(2π n/D)]. (6.8) 
 
In order to highlight the effects of long-term spike train regularization, we consider 
the case where the stimulus duration spans multiple interspike intervals. The mean 
interspike interval for the two matched models is 20 msec, as determined from a 10 s 
interval of simulated baseline activity with no stimulus present. In the following 
example, we consider an input signal with duration D = 1000 msec, such that on 
average about 50 spikes occur during a stimulus cycle. The stimulus amplitude is 
chosen to be A = 0.25. 
 
The average response to 1000 presentations of this stimulus is shown in Figure 8A1 
for the linear adaptive threshold model and in Figure 8A2 for the random threshold 
model. In both cases, the response is sinusoidal with an amplitude of approximately 3 
spikes/s. Note that the phase is shifted by approximately 90 degrees relative to the 
stimulus. This is because the neurons are operating as differentiators at this stimulus 
frequency and are thus responding to the slope of the stimulus, rather than its absolute 
magnitude. As can be seen by comparing Figures 8A1 and 8A2, there is no obvious 
difference in response gain or variability in the poststimulus rate histograms, nor is 
there any obvious difference in the short-term variability of the individual spike trains 
shown in the dot raster displays. This similarity in the response properties of the two 
models is not surprising, given that they were tuned to have matching characteristics. 
Although the properties of the two models are similar on average, the detectability of 
the stimulus on a trial-by-trial basis is dramatically different. 
 
The stimulus does not change the mean number of spikes observed during a trial. 
Rather there is a slight increase in the spike count during the first half of the trial, and 
a slight decrease during the last half. For this particular stimulus amplitude, there is a 
mean increase of one spike in the first half of the trial and a mean decrease of one 
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spike in the second half of the trial, relative to the baseline level. To characterize the 
detectability of this small change in the spike train statistics, we presented each 
neuron model with a set of randomized trials, half of which contained a stimulus (see 
equation 6.8) and half of which did not. The detection task requires making a 
prediction on a trial-by-trial basis of whether or not the stimulus was present, based 
on the binary spike train data si for that trial. Since the mean number of spikes does 
not change in the presence of the stimulus, this decision cannot be based on the total 
spike count. To optimally detect the stimulus, the spike train data is passed through a 
filter with an impulse response that is matched to the expected temporal profile of the 
signal (Kay, 1998). In this case, the matched filter m is well approximated by a 
single-cycle sinusoid with zero phase shift 
 
 m[n] = sin(2π n/D) (6.9) 
 
and the output of the matched filter zi on trial i is: 

 ∑
=

=
D

n
ii nsnmz

1
][][ . (6.10) 

 
Figures 8B1 and 8B2 show distributions of the matched filter output for the two 
models, both in the presence and absence of the stimulus. For both models, the 
matched filter output has a mean near zero when no stimulus is present and a mean of 
approximately 1.5 when there is a stimulus. Although the shift in the mean is 
approximately the same for both models, the width of the distribution is significantly 
narrower for the adaptive threshold model (s.d. ≈ 0.6) than for the random threshold 
model (s.d. ≈ 3.4). This difference in variability has a significant impact on weak 
signal detectability.  
 
The output of the matched filter zi can be used as a test statistic for binary hypothesis-
testing, in which the goal is to decide on a trial-by-trial basis whether or not a 
stimulus has occurred based on the value of zi for that trial. In this simple case, the 
problem can be handled using the classical Neyman-Pearson approach (Kay, 1998). 
For each trial i, the filter output zi is compared with a threshold value zthresh. If the 
filter output is greater than the threshold value, the detector classifies the trial as a 
stimulus trial. Depending on the threshold level that is selected, there will be some 
detection probability Pd of correctly classifying a trial that contained a stimulus as a 
stimulus trial, and some false alarm probability Pfa of misclassifying a trial without a 
stimulus as a stimulus trial. If the threshold value is moved lower to improve 
detection efficiency, the false alarm probability also increases. This tradeoff between 
detection probability and false alarm probability can be summarized by the receiver 
operating characteristic (ROC) of the detector, which is a parametric plot of Pd versus 
Pfa as a function of threshold zthresh. The ROC plots for the two neuron models are 
shown in Figures 8C1 and 8C2. The ability to reliably detect the presence of the 
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stimulus is much better for signals encoded by the adaptive threshold model. For 
example, if the threshold is set at a level corresponding to a false alarm probability of 
10%, the probability of detecting the stimulus is 90% in spike trains arising from the 
adaptive threshold model, but only 19% in spike trains from the random threshold 
model.  
 
7 Conclusions 
 
Spike trains that appear irregular on short time scales can exhibit longer-term 
regularity in their firing pattern. This regularity arises from the correlation structure 
of the ISI sequence and involves memory effects spanning multiple interspike 
intervals (Ratnam & Nelson, 2000). This form of long-term spike train regularization 
can arise from the refractory effects associated with a dynamic spike threshold 
(Chacron et al., 2001). The functional relevance of spike train regularity is supported 
by our experimental data on prey capture behavior of weakly electric fish. In our 
analysis of electrosensory afferents (Ratnam & Nelson, 2000) we found that spike 
train regularity was most pronounced on time scales of about 40 interspike intervals, 
which corresponds to a time period of about 175 msec. This time scale is well 
matched to the relevant time scales for prey capture behavior in these animals 
(Nelson & MacIver, 1999; MacIver, Sharabash, & Nelson, 2001). The time scale 
approximately matches the duration that the electrosensory image of a small prey 
would activate a single electrosensory afferent fiber. We speculate that spike train 
regularization on the time scale of tens to hundreds of milliseconds may play a key 
role in enhancing the detectability of natural sensory signals, not just in the 
electrosensory system, but in other systems as well. Regularizing effects, although 
not as pronounced, have been observed on similar time scales in auditory afferents 
(Lowen & Teich, 1992). Whether such effects exist in other systems is largely 
unknown because the appropriate analyses of multiscale spike train variability have 
not been carried out. 
 
The effects of spike train regularization can be most readily observed in experimental 
data by analyzing the variance-to-mean ratio of the kth-order interval distributions Ik. 
For a renewal process, which lacks correlations in the interval sequence, the variance-
to-mean ratio is constant for all interval orders k. A decrease in the variance-to-mean 
with increasing k indicates a regularizing effect, whereas an increase indicates that 
the spike train is becoming more irregular. Asymptotically, similar relationships hold 
for the analysis of spike count distributions, where the variance-to-mean ratio is 
referred to as the Fano factor (Fano, 1947; Gabbiani & Koch, 1998). However, 
because the Fano factor decreases initially even for a renewal process, the effects of 
intermediate-term spike train regularization can be overlooked in a Fano factor 
analysis. Therefore, we recommend the analysis of kth-order interval distributions as 
the best approach for characterizing spike train variability on multiple time scales. 
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We have presented a simple model, derived from a more detailed model by Chacron 
et al. (2000; 2001), that exhibits long-term spike train regularization arising from 
refractory effects associated with a dynamic spike threshold. Memory effects 
associated with the threshold dynamics give rise to negative correlations in the ISI 
sequence; hence this is a non-renewal model of spike generation. Many common 
neural models, including those based on integrate-and-fire dynamics or 
inhomogeneous Poisson processes, do not produce correlations in the ISI sequence, 
and hence are classified as renewal models. Recent models of electrosensory afferent 
dynamics, including our own, fall into the category of renewal process models 
(Nelson et al., 1997; Kreiman, Krahe, Metzner, Koch, & Gabbiani, 2000). While such 
renewal models can accurately match the mean and CV of the first-order ISI 
distribution, as well as the frequency response characteristics of the experimental 
data, their failure to generate longer-term spike train regularization may make them 
unsuitable for applications in which it is important to accurately estimate detection 
thresholds or coding efficiency for weak sensory stimuli. Given that refractory effects 
are commonplace in neural systems, we suspect that this form of spike train 
regularization may be more widespread than previously appreciated. Hence non-
renewal models, such as the one presented here, may have broad applicability when 
modeling the encoding of weak signals in neuronal spike trains.  
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Figure Captions 
 
Figure 1: Representative time history of variables in the linear adaptive threshold 
model. Model parameters: a = 5 msec, b = 1 mV, σ = 0.2 mV, c = 1 MΩ. The input 
signal is a sinusoid with a period of 100 time steps: i[n] = sin(2πn/100) nA. The 
voltage v[n], shown by the heavy solid line, is a noisy version of the input. The spike 
threshold θ[n] is shown by the sawtooth-shaped solid line. A spike (s[n] = 1) is 
generated whenever the voltage crosses the threshold level. Immediately following 
each spike, the threshold is boosted by an amount b and subsequently decays linearly 
with a slope –b/a until the next spike is generated. Total duration shown in the figure 
is 100 time steps. 
 
Figure 2: Representative spontaneous ISI distributions obtained from the linear 
adaptive threshold model. The parameter values for a andσ/b, as well as the 
empirically measured mean and CV of the ISI distribution are shown in each panel. 
The parameter a controls the mean of the ISI distribution, and the ratioσ/b controls 
the CV. The left three panels (A1-C1) show results for a relatively short mean ISI (a 
= 3 msec), while the right three panels (A2-C2) show results for a longer mean ISI (a 
= 30 msec). Simulation duration was 100,000 times steps. 
 
Figure 3: Spontaneous spike train properties of the linear adaptive threshold model 
compared with experimental data. The left side (A1–C1) shows the ISI distribution, 
joint interval histogram and variance-to-mean ratio of the kth order interval 
distribution for a representative P-type electrosensory afferent nerve fiber from an 
electric fish (Ratnam and Nelson, 2000). The right side (A2–C2) shows the 
corresponding plots for the model with a = 2.9 msec, b = 2.0 mV, σ = 1.0 mV. The 
model is able to match the mean and variance of the first order ISI distribution (A1, 
A2), as well as qualitatively reproduces the short-long correlations between 
neighboring intervals observed in the joint interval histogram (B1, B2), and the 
approximate decline as k-1in the variance-to-mean ratio (C1, C2). The dashed line in 
C1 and C2 indicates k-1. Simulation duration was 100,000 time steps. 
 
Figure 4: Reformulation of the linear adaptive threshold model to facilitate the 
analysis of spike train properties. (A) Representative time history of spontaneous 
spike activity and internal state variables as originally formulated (equations 2.1-2.4). 
(B) Time history of the state variables in the reformulated version of the model 
(equations 3.1-3.4). The reformulated model gives rise to an identical set of spike 
times. Parameter values: a = 20 msec, σ = 0.2 mV,  b = 1 mV.  
 
Figure 5: Frequency response characteristics of the linear adaptive threshold model. 
The model has high-pass filter characteristics. (A) Gain and phase for three different 
values of b, with a = 3 msec and σ/b = 1. The gain has units of spikes/s per unit 
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input. The gain varies inversely with b; the phase curves are overlapping and 
indistinguishable. (B) Gain and phase for three different values of a, with b = 0.1 mV 
and σ = 0.1 mV. The parameter a influences the corner frequency of the high-pass 
filter. Simulation duration was 100,000 time steps for a = 3 msec and a = 10 msec, 
and 500,000 time steps for a = 30 msec. 
 
Figure 6: Frequency response characteristics of the exponential adaptive threshold 
model compared with experimental data. The left panels show the spontaneous spike 
train properties of the model: (A) ISI distribution, and (B) variance-to-mean ratio of 
the kth order interval distribution. The right panel (C) shows gain and phase of the 
driven response. The data points show the population-averaged responses from 99  
P-type electrosensory afferent fibers (modified from Nelson et al., 1997). Error bars 
represent the standard deviation of the population average at each frequency. The 
continuous solid lines show the gain and phase of the exponential adaptive threshold 
model with b = 0.11 mV, σ = 0.04 mV, θ0 = −1 mV, τf = 2 msec, and τθ = 30 msec. 
Simulation duration was 300,000 time steps. 
 
Figure 7: Comparison of two neural models with matched spontaneous ISI and driven 
response characteristics. The left side (A1-C1) shows results for the linear adaptive 
threshold model (equations 2.1-2.4), while the right side (A2-C2) shows an integrate-
and-fire based model with a random threshold (equations 5.1-5.5). The model 
parameters were adjusted to yield similar first-order ISI distributions (A1, A2) and 
similar frequency response characteristics (B1, B2). However, the higher-order 
interval statistics, as characterized by the variance-to-mean ratio of kth order interval 
distribution, are quite different (C1, C2). The linear adaptive threshold model exhibits 
strong regularizing effects at large interval orders, whereas the random threshold 
model has variance-to-mean that is independent of interval order. 
 
Figure 8: Comparison of signal detectability for the linear adaptive threshold (A1-C1) 
and random threshold (A2-C2) models. The upper panels (A1, A2) show the stimulus 
waveform (arbitrary units), dot raster displays of representative spike activity, and 
post-stimulus rate histograms computed by averaging spike activity over 1000 
stimulus trials. A solid white line shows a sinusoidal fit to the response. The middle 
panels (B1, B2) show histograms of the matched filter output for trials with and 
without a stimulus. The bottom panels (C1, C2) illustrate the dramatic improvement 
in detectability for signals encoded by the adaptive threshold model relative to the 
random threshold model, as measured by the ROC curves. The dashed lines indicate 
chance-level performance.
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