Neural Computation. 11:85-90. 1999.

Narrow vs wide tuning curves: what’s best for a
population code?

Alexandre Pouget!, Sophie Deneve!, Jean-Christophe Ducom! and Peter E.

Latham?

! Georgetown Institute for Computational and Cognitive Sciences
Georgetown University
Washington, DC 20007-2197
and
2 Department of Neurobiology
University of California at Los Angeles

Los Angeles, CA 90095-1763

To whom correspondence should be addressed:

Alexandre Pouget

Georgetown Institute for Cognitive and Computational Sciences
New Research Building. Room EP(04

3970 Reservoir Road NW

Washington, DC 20007-2197

Fax: (202) 687 0617

Email: alex@giccs.georgetown.edu

Acknowledgments: We thank Rich Zemel, Peter Dayan and Kechen Zhang

for their comments on an earlier version of this manuscript.



Abstract

Neurophysiologists are often faced with the problem of evaluating the
quality of a code for a sensory or motor variable, either to relate it to the
performance of the animal in a simple discrimination task, or to compare
the codes at various stages along the neuronal pathway. One common
belief that has emerged from such studies is that sharpening of tuning
curves improves the quality of the code, although only to a certain point
beyond which further sharpening is believed to be harmful. We show
that this belief relies on either problematic technical analysis or improper
assumptions about the noise. We conclude that one cannot tell, in the
general case, whether narrow tuning curves are better than wide ones;
the answer depends critically on the covariance of the noise. The same
conclusion applies to other manipulations of the tuning curve profiles such

as gain increase.

It is widely assumed that sharpening tuning curves, up to a certain point,
can improve the quality of a coarse code. For instance, attention is believed to
improve the code for orientation by sharpening the tuning curves to orientation
in the visual area V4 (Spitzer et al. , 1988). This belief comes partly from
a seminal paper by Hinton, McClelland and Rumelhart (1986) which showed
that there exists an optimal width for which the accuracy of a population code
is maximized, suggesting that sharpening is beneficial when the tuning curves
have a width larger than the optimal one. This result, however, was derived for
binary units and does not readily generalize to continuous units.

A recent attempt to show experimentally that, for continuous tuning curves,
sharper is better relied on the center-of-mass estimator to evaluate the quality of
the code (Fitzpatrick et al. , 1997). These authors measured the tuning curves
of auditory neurons to interaural time difference (ITD), a cue for localizing audi-
tory stimuli. They argued that narrow tuning curves are better than wide ones
—in the range they observed experimentally— in the sense that the minimum
detectable change (MDC) in ITD is smaller with narrow tuning curves when

using a center-of-mass estimator.



Their analysis, however, suffered from two problems: i) they did not con-
sider a biologically plausible model of the noise and, ii) the MDC obtained with
a center-of-mass is not, in the general case, an objective measure of the infor-
mation content of a representation, because center-of-mass is not an optimal
readout method (Snippe, 1996).

A better way to proceed is to use Fisher information, the square root of
which is inversely proportional to the smallest achievable MDC independent of
the readout method (Paradiso, 1988; Seung & Sompolinsky, 1993; Pouget et al.
, 1998) (Shannon information would be another natural choice but it is simply,
and monotonically, related to Fisher information in the case of population coding
with a large number of units; see Brunel and Nadal, 1998. It thus yields identical
results when comparing codes). To determine whether sharp tuning curves are
indeed better than wide ones, one can simply plot the MDC obtained from Fisher
information as a function of the width of the tuning curves. Fisher information
is defined as:
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where P(A|f) is the distribution of the activity conditioned on the encoded

log P(A0) |, (1)

variable @ and E[-] is the expected value over the distribution P(A|f).

As we show next, sharpening increases Fisher information when the noise
distribution is fixed, but sharpening can also have the opposite effect, i.e., it can
decrease information, when the distribution of the noise changes with the width.
The latter case, which happens when sharpening is the result of computation in
a network, is the most relevant for neurophysiologists.

Consider first the case in which the noise distribution is fixed. For instance,
for a population of N neurons with Gaussian tuning curves and independent

Gaussian noise with variance o2, Fisher information reduces to:

N .
=% ot (2)

where f;(0) is the mean activity of unit ¢ in response to the presentation angle, 6,



and f}(0) is its derivative with respect to 6. Therefore, as the width of the tuning
curve decreases, the derivative increases, resulting in an increase of information.
This implies that the smallest achievable MDC goes up with the width of tuning
as shown in figure 1-A, because the MDC is inversely proportional to the square
root of the Fisher information. This is a case where narrow tuning curves are
better than wide ones. Note, however, that the optimal tuning curve for Fisher
information has zero width (or more precisely, a width on the order of 1/N where
N is the number of neurons), unlike what Hinton et al. found for binary tuning
curves. Note also that for the same kind of noise, the MDC measured with
center-of-mass shows the opposite trend, i.e., wide is better, confirming that the
MDC obtained with the center-of-mass does not reflect the information content
of the representation !.

Consider now a case in which the noise distribution is no longer fixed, such
as in the two layer network illustrated in figure 1-B. The network has the same
number of units in both layers and the output layer contains lateral connections
which sharpen the tuning curves. This case is particularly relevant for neuro-
physiologists since this type of circuit is quite common in the cortex. In fact,
some evidence suggests that a similar network is involved in tuning curve sharp-
ening in the primary visual cortex for orientation selectivity (Ringach et al. ,
1997).

Do the output neurons contain more information than the input neurons,
just because they have narrower tuning curves? The answer is no, regardless of
the details of the implementation, because processing and transmission cannot
increase information in a closed system (Shannon & Weaver, 1963). Sharpening
is done at the cost of introducing correlated noise among neurons, and the loss
of information in the output layer can be traced to those correlations (Pouget
& Zhang, 1996; Pouget et al. , 1998). This is a case where wide tuning curves

(the ones in the input layer) are better than narrow ones (the ones in the output

IFitzpatrick et al. (1997) reported the opposite result; they found sharp tuning curves to
be better than wide ones when using a center-of-mass estimator. This is because the noise

model they used is different from ours and biologically implausible.
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Figure 1: A- For a fized noise distribution, the minimum detectable change
(MDC) obtained from Fisher information (solid line) increases as the width in-
creases. Therefore, in this case, narrow tuning curves are best, in the sense
that they transmit more information about the presentation angle. Note that
using a center-of-mass estimator (dashed line) to compute the MDC leads to
the opposite conclusion, that wide tuning curves are best. This is a compelling
demonstration that the center of mass is not a proper way to evaluate informa-
tion content. B- A neural network with 10 input units and 10 output units, fully
connected with feedforward connections between layers and lateral connections
in the output layer. We show only one representative set of connections for each
layer. The lateral weights can be set in such a way that the tuning curves in the
output layer are narrower than in the input layer (see Pouget et al., 1998, for
details). Because the information in the output layer cannot be greater than the
information in the input layer, sharpening tuning curves in the output layer can
only decrease (or at best preserve) the information. Therefore, the wide tuning
curves in the input layer contain more information about the stimulus than the
sharp tuning curves in the output layer. In this case, wide tuning curves are

best.



layer).

That wide tuning curves contain more information than narrow ones in this
particular architecture, can be easily missed if one assumes the wrong noise
distribution. Unfortunately, it is difficult to measure precisely the joint distri-
bution of the noise or, even, its covariance matrix. It is therefore often assumed
that the noise is independent among neurons when dealing with real data. Let’s
examine what happens if we assume independent noise for the output units of
the network depicted in figure 1-B. We consider the case in which the output
units are deterministic, i.e., the only source of noise is in the input activities,
and the output tuning curves have the same width as the input tuning curves.
We have shown in a previous paper (Pouget et al. , 1998) that, in this case, the
network performs a close approximation to maximum likelihood and the noise
in the output units is Gaussian with variance f}(6)?/I;, where I; is the Fisher
information in the input layer. Using equation 2 for independent Gaussian noise

we find that the information in the output layer, denoted I, is given by:

N f,
Zf z /Il zzlfl NI.

i=1
The independence assumption would therefore lead us to conclude that the
information in the output layer is much larger than in the input layer, which is
clearly wrong.

These simple examples demonstrate that a proper characterization of the
information content of a representation must rely on an objective measure of
information, such as Fisher information, and detailed knowledge of the noise
distribution and its covariance matrix. (The number of variables being encoded
is also critical, as shown by Zhang et al., in press). Using estimators such as
the center-of-mass, or assuming independent noise, are not guaranteed to lead
to the right answer. Therefore, attention may sharpen (Spitzer et al. , 1988)
tuning curves (and/or increase their gain, McAdams and Maunsell, 1996 ) but
whether this results in a better code is impossible to tell without knowledge

of the covariance of the noise across conditions. Hopefully, the emergence of



multielectrode recordings will soon make it possible to measure these covariance

matrices.
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