
Decoding From Spike Trains

Zoran Nenadic

Division of Engineering and Applied Science
California Institute of Technology

Pasadena, CA 91125

1

Zoran Nenadic DECODING FROM SPIKE TRAINS 2

Px(t)

1
s (t)

s (t)

s (t)

2

N

Figure 1: Population of neurons

1 Introduction

Suppose that we have a population P of an arbitrary number of neurons N . Suppose
that the population responds to a time dependent scalar variable x(t) by producing
a number of spike trains as shown by Fig. 1, i.e.

S(t) = [s1(t), s2(t), · · · , sN(t)],

where

sj(t) =

nj(t)∑

k=1

δ(t − tjk) ∀j ∈ {1, 2 · · · , N},

and nj(t) is the total number of spikes produced by the j − th neuron in the interval
[0, t]. We allow the possibility of nj = 0, in which case sj(t) ≡ 0.

Let us suppose that the population acts with a certain degree of randomness, i.e.
the repetition of the same x(t) does not produce identical response. Assuming that
the collection of spike trains carries “enough” information about x(t) (i.e. x(t) is
encoded in the spike trains), we can ask the following question: How would one
decode an arbitrary function of x (and in particular x itself) from the spike train
observations?

2 Detection Problem

Let O(t) be the observed response of the population P to a time varying scalar
function x(t). In general O(t) can be any set of features of the response S(t). Using
Bayes’ rule one can easily write

P (x(t) |O(t)) =
P (O(t) | x(t)) P (x(t))

P (O(t))
(1)

If x(t) takes values from a discrete set of functions {xi(t)}
M
1 , we can formulate the

following detection problem

x(t) = {xm(t) | xm(t) = arg max
i

P (xi(t) |O(t))} (2)

Zoran Nenadic DECODING FROM SPIKE TRAINS 3

The idea given by (2) is not a new one and has been extensively used for various
applications. For example, if

O(t) = [n1(t), n2(t), · · · , nN (t)]

where nj(t) is the number of spikes fired by j − th neuron in time interval [0, t],
one has so-called rate decoding. Since neurons fire with a considerable degree
of variability, one might argue that the precise spike timings are not important in
the encoding process, and that the idea of rate decoding is justified. However, this
encoding/decoding scheme is not very efficient, especially if the firing rates of neurons
within the population are not sufficiently high. Assuming the signals are encoded in a
sequence of spike times {tjk}

nj

1 increases the information capacity of the population P
tremendously. Here, we propose the decoding method that is based on full statistical
description of the population response, namely we assume that O(t) = S(t).

3 Decoding Algorithm

The goal of this section is to present a decoding method that utilizes full statistical
description of the response S(t). In this context the equation (1) becomes

P (xi(t) |S(t)) =
P (S(t) | xi(t)) P (xi(t))

P (S(t))
⇒

P (xi(t) | [s1(t), s2(t), · · · , sN(t)]) =

=
P ([s1(t), s2(t), · · · , sN(t)] | xi(t)) P (xi(t))

P ([s1(t), s2(t), · · · , sN(t)])

=
P ([s1(t), s2(t), · · · , sN(t)] | xi(t)) P (xi(t))

M∑

i=1

P ([s1(t), s2(t), · · · , sN(t)] | xi(t)) P (xi(t))

(3)

The proposed scheme is fairly general and often difficult to implement. To make
the problem tractable and easy to implement we will make several important assump-
tions.

Assumption The responses of individual neurons are statistically independent. The
consequence of this assumption is that

P ([s1(t), s2(t), · · · , sN(t)] | xi(t)) =

N∏

j=1

P (sj(t) | xi(t)) (4)

Assumption The prior probabilities of individual inputs are equal i.e.

P (xi(t)) =
1

M
∀i = 1, 2, · · · , M (5)

Zoran Nenadic DECODING FROM SPIKE TRAINS 4

Applying (4) and (5) to the decoding scheme (3) we have

P (xi(t) | [s1(t), s2(t), · · · , sN(t)]) =

N∏

j=1

P (sj(t) | xi(t))

M∑

i=1

N∏

j=1

P (sj(t) | xi(t))

(6)

The chief difficulty of decoding in the present context is determining the conditional
probability of j − th response given i − th input.

Let sj(t) =
∑nj(t)

k=1 δ(t− tjk) be the response of the j − th neuron in the population
to the input xi(t). Our goal is to evaluate the conditional probability P (sj(t) | xi(t)).
Since we consider only one input-response pair at a time, the indices i and j will be
dropped for simplicity. The signal s(t) is fully characterized by the sequence of times
{t1, t2, · · · , tn} so we have

P (s(t) | x(t)) = P (θ1 = t1, θ2 = t2, · · · , θn = tn, no spikes in [tn, t] | x(t)),

where θk is a random variable that corresponds to the arrival time of the k− th spike
in the spike train. Clearly, θk is a continuous random variable, so the probability of
the event above is equal to 0, and we are better off with its likelihood (probability
density function), defined by

f(s(t) | x(t)) ,
∂nP (s(t) | x(t))

∂t1∂t2 · · ·∂tn
=

= lim
dt1→0

· · · lim
dtn→0

P (θ1 ∈ [t1, t1 + dt1], · · · , θn ∈ [tn, tn + dtn], N[tn+dtn, t] = 0)

dt1 · · ·dtn
,

where conditioning on x(t) has been dropped for simplicity and N[tn+dtn, t] = 0 means
that we have no spikes on the interval [tn + dtn, t].

Assumption The arrivals (non-arrivals) at instant t are only dependent on the pre-
vious arrival. This Markov-type assumption means that θn depends on θn−1 only.

Under this assumption the conditional probability calculation further simplifies to

P (s(t) | x(t)) = P (N[tn+dtn, t] = 0 | θn, · · · , θ1) P (θn, · · · , θ1) =

= P (N[tn+dtn, t] = 0 | θn) P (θn, · · · , θ1)

= P (N[tn+dtn, t] = 0 | θn) P (θn | θn−1, · · · , θ1) P (θn−1, · · · , θ1)

...

= P (N[tn+dtn, t] = 0 | θn) P (θn | θn−1) · · ·P (θ2 | θ1) P (θ1),

and the probability density function (pdf) becomes

f(s(t) | x(t)) =

= lim
dt1→0

· · · lim
dt1→0

P (N[tn+dtn, t] = 0 | θn) P (θn | θn−1) · · ·P (θ2 | θ1) P (θ1)

dt1 · · ·dtn
= P (N[tn, t] = 0 | θn = tn) fθn | θn−1

(tn | tn−1) · · · fθ2 | θ1
(t2 | t1) fθ1(t1),

Zoran Nenadic DECODING FROM SPIKE TRAINS 5

where fθn | θn−1 represent transition densities. It is often more useful to use inter-
spike intervals (ISI) defined by Tn = θn − θn−1 (θ0 = 0) instead of spike arrivals θn.
The conditional density then becomes

f(s(t) | x(t)) =

= K P (N[tn, t] = 0 |Tn = τn) fTn |Tn−1(τn | τn−1) · · ·fT2 |T1(τ2 | τ1) fT1(τ1),

where τn = tn−tn−1 (t0 = 0) and K is a normalization constant that makes f(s(t) | x(t)
a valid pdf candidate. The transition densities fTn |Tn−1 are to be found using either
parametric or non-parametric methods. Parametric methods rely on assuming the
transition densities are parameterized by a number of unknown parameters which are
found from experimental observations. Non-parametric methods rely on direct (point-
wise) estimate of the transition densities. Both methods are based on experimental
data. Using densities instead of probabilities the decoding algorithm (6) becomes

f(xi(t) | [s1(t), s2(t), · · · , sN (t)]) =

N∏

j=1

f(sj(t) | xi(t))

M∑

i=1

N∏

j=1

f(sj(t) | xi(t))

(7)

To illustrate the application of the algorithm above, let us suppose that the underlying
spike generating mechanism is a Poisson process with a constant rate λ. One can easily
show that

fTn |Tn−1
(τn | τn−1) = fTn

(τn) = λ e−λ τn (renewal assumption)

In particular one has

f(s(t) | x(t)) = K e−λ (t−tn)λ e−λ τn · · ·λ e−λ τ1 = K λn(t) e−λ (t−tn+τn+···+τ1) =

= K λn(t) e−λ (t−tn+tn−tn−1+···+t2−t1+t1) = K λn(t) e−λ t.

To signify that the rate λ depends on both input and cell, we write

λ = Λj(xi),

where xi(t) = xi = const and Λj(x) is so-called tuning curve of the j − th cell. One
can easily show that in this case K = 1/n(t)!. Written more detailed, the conditional
pdf is given by

f(sj(t) | xi(t)) =
[Λj(xi)]

nj(t)

nj(t)!
e−Λj(xi) t,

and finally the decoding scheme (7) simply becomes

f(xi(t) | [s1(t), s2(t), · · · , sN(t)]) =

N∏

j=1

[Λj(xi)]
nj (t)

nj(t)!
e−Λj(xi) t

M∑

i=1

N∏

j=1

[Λj(xi)]
nj (t)

nj(t)!
e−Λj(xi) t

(8)

Zoran Nenadic DECODING FROM SPIKE TRAINS 6

This result coincides with decoding scheme based on firing rates only. Namely, if
nj(t) is the number of spikes fired by the j − th cell on the interval [0, t], one can
rewrite (7) as

P (xi(t) | [n1(t), n2(t), · · · , nN (t)]) =

∏
P (nj(t) | xi(t))∑ ∏
P (nj(t) | xi(t))

, (9)

and

P (nj(t) | xi(t)) =
[Λj(xi) t]nj(t)

nj(t)!
e−Λj(xi) t.

Finally (9) becomes

P (xi(t) | [n1(t), n2(t), · · · , nN(t)]) =

∏ [Λj(xi) t]nj (t)

nj(t)!
e−Λj(xi) t

∑∏ [Λj(xi) t]nj (t)

nj(t)!
e−Λj(xi) t

=

=
tn1(t)+···+nN (t)

∏ [Λj(xi)]
nj (t)

nj(t)!
e−Λj(xi) t

tn1(t)+···+nN (t)
∑ ∏ [Λj(xi)]

nj (t)

nj(t)!
e−Λj(xi) t

=

∏
[Λj(xi)]

nj (t)

nj(t)!
e−Λj(xi) t

∑∏
[Λj(xi)]

nj (t)

nj(t)!
e−Λj(xi) t

(10)

which is result identical to (8). This result is not surprising since Poisson process is
completely determined by the rate λ and taking into account full statistical description
of the spike trains does not yield any new information.

4 Simulation Results

Suppose that we have a population of N = 40 neurons, and suppose that the neurons
are firing according to Poisson model with dead time 4 = 2 ms (this can be taught of
as absolute refractory period, i.e. the time interval following a spike in which neuron
is unable to fire an action potential). Let us assume that the 40 cells within the
population have their mean firing rates as shown by Fig. 2. These curves could be
experimentally obtained by averaging the response of individual neurons to a sequence
of constant stimuli of different magnitude. In particular, the tuning curves from Fig.
2 are obtained as raised cosine functions

Λj(x) = kj cos(x − xj) + cj j = 1, 2, · · · , 40 (11)

where x ∈ [0, 2π], xj is the preferred direction of j − th neuron and kj and cj are
constants that determine the height and the width of the tuning curves. For simplic-
ity we take kj = cj and we draw xj from a uniform distribution over [0, 2π]. Note
that our maximum firing rate in the population does not exceed 24 spikes/s, which
should make decoding process more challenging.

In the spirit of detection problem defined by equation (2), let us assume that
x takes its values from the set X = {0, π/4, π/2, · · · , 7 π/4} (M = 8). For each
x ∈ X and for each neuron from the population, the mean firing rate λ is calculated

Zoran Nenadic DECODING FROM SPIKE TRAINS 7

0 pi/2 pi 3 pi/2 2 pi
0

5

10

15

20

25

Input

F
iri

ng
 (

H
z)

Figure 2: Tuning curves.

0 0.2 0.4 0.6 0.8 1
1

5

9

13

17

21

25

29

33

37

41

Time (s)

R
as

te
r

N
um

be
r

Figure 3: Raster plots.

Zoran Nenadic DECODING FROM SPIKE TRAINS 8

according to (11), and sequences of spikes are generated using Poisson generator with
dead time 4 = 2 ms. The realization of one such collection of random processes is
given by Fig. 3. The raster plots from Fig. 3 correspond to one of the eight inputs
from X . Given a conditional response, such as the one shown by Fig. 3, our goal is
to estimate the most likely value of the input that elicited such response. Since we
know what inputs are indeed behind every response, we can use this knowledge for
cross-validation of our results. The decoding is performed according to (7).

The results of the decoding procedure across 8 inputs are shown in Fig. 4. The
top plot in each subfigure shows the relative frequency of decoded directions. It is not
surprising that the decoded input changes in time, despite the fact that the encoded
input is constant in time. However, the decoded value stabilizes after some time, and
does not change any more. The settling time is different for different inputs, e.g. 300
ms for input 4 (x4 = 3 π/4). The middle plot in each subfigure shows the traces of
decoded inputs as a function of time. Input 7 is decoded with a 100% accuracy, i.e.
this input emmerges as dominant (most likely) for all times. The bottom image in
each subfigure shows the color coded likelihood of each input. The colorbar indicates
that the likelihoods are normalized between 0 and 1.

Zoran Nenadic DECODING FROM SPIKE TRAINS 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

Time (s)

In
pu

t

1 2 3 4 5 6 7 8
0

50

100
40 cells

Input

Fr
eq

ue
nc

y
(%

)

0.0

0.5

1.0

Time (s)

In
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

Time (s)

In
pu

t

1 2 3 4 5 6 7 8
0

50

100
40 cells

Input

Fr
eq

ue
nc

y
(%

)

0.0

0.5

1.0

Time (s)

In
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

Time (s)

In
pu

t

1 2 3 4 5 6 7 8
0

50

100
40 cells

Input

Fr
eq

ue
nc

y
(%

)

0.0

0.5

1.0

Time (s)

In
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

Time (s)

In
pu

t

1 2 3 4 5 6 7 8
0

50

100
40 cells

Input

Fr
eq

ue
nc

y
(%

)

0.0

0.5

1.0

Time (s)

In
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

Time (s)

In
pu

t

1 2 3 4 5 6 7 8
0

50

100
40 cells

Input

Fr
eq

ue
nc

y
(%

)

0.0

0.5

1.0

Time (s)

In
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

Time (s)

In
pu

t

1 2 3 4 5 6 7 8
0

50

100
40 cells

Input

Fr
eq

ue
nc

y
(%

)

0.0

0.5

1.0

Time (s)

In
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

Time (s)

In
pu

t

1 2 3 4 5 6 7 8
0

50

100
40 cells

Input

Fr
eq

ue
nc

y
(%

)

0.0

0.5

1.0

Time (s)

In
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

Time (s)

In
pu

t

1 2 3 4 5 6 7 8
0

50

100
40 cells

Input

Fr
eq

ue
nc

y
(%

)

0.0

0.5

1.0

Time (s)

In
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

Figure 4: Detection results across 8 inputs.

